Chắc là tam giác SAB nằm trong mp vuông góc với đáy?
Gọi H là trung điểm AB \(\Rightarrow SH\perp AB\Rightarrow SH\perp\left(SAB\right)\)
\(\Rightarrow SH=d\left(S;\left(ABC\right)\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\)
Chắc là tam giác SAB nằm trong mp vuông góc với đáy?
Gọi H là trung điểm AB \(\Rightarrow SH\perp AB\Rightarrow SH\perp\left(SAB\right)\)
\(\Rightarrow SH=d\left(S;\left(ABC\right)\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\)
Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC
a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC)
b) Tính khoảng cách giữa hai đường thẳng AB và SG
Cho hình chóp S.ABC có tam giác SAB đều cạnh a, tam giác ABC cân tại C. Hình chiếu của S trên mặt phẳng (ABC) là trung điểm của cạnh AB, góc hợp bởi SC và mặt đáy là 30°. Tính Khoảng cách giữa SA và BC
Cho h/chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a, \(SA\perp\left(ABC\right)\), SA = 2a. Gọi P là điểm trên cạnh AB sao cho \(BP=\dfrac{1}{3}AB\). Tính khoảng cách từ điểm B đến mặt phẳng (SPC).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a. Cạnh bên SA vuông góc với mặt phẳng (ABC), SA= 3a . Gọi M là trung điểm cạnh AC. Tính khoảng cách giữa hai đường thẳng BM và SC
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB = a, SA vuông góc với mặt phẳng đáy và SA = 3a. Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ điểm G đến mặt phẳng (SBC) theo a.
cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng ABC, gọi M là điểm thuộc đoạn SC sao cho MC=2MS. Biết AB=a, AC=a. Tính thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng AC và BM theo a.
- e đã tính được thể tích vậy còn khoảng cách làm ntn ạ
Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).