tìm x biết
(x-5)(x+9)=0
Tìm x biết a) 2x(x-5)-9(5-x)=0
b) (x+2)^2-25=0
\(a.\left[{}\begin{matrix}2x+9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b.\left[{}\begin{matrix}x-3=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Tìm x biết ( x + 5 ) ( x + 9 ) > 0
( x + 5 ) ( x + 9 ) > 0
TH1:
x+5>0 và x+9>0
=>x>-5 và x>-9
=>x>-5
TH2:
x+5<0 và x+9<0
x<-5 và x<-9
=>x<-9
(x + 5)(x+9) > 0
(+) TH1 : x + 5 >0 và x +9 > 0 => x>-5 và x>-9
Kết hợp hia điều trên => x>-5
(+) Th2 : x+ 5 < 0 và x+ 9 < 0 => x < -5 và x< - 9
Kết hợp hia điều trên => x<-9
Vậy x>-5 hoặ x < -9 thì (x+5)(x+9) > 0
Tìm x ∈ Z, biết:
a) x - 9 = -14
b) 2( x + 7 ) = -16
c) |x – 9| = 7
d) ( x – 5 )( x + 7 ) = 0
a) x – 9 = -14
x = -14 + 9
x = -5
b) 2( x + 7 ) = -16
2( x + 7 ) = 2 . ( -8 )
x + 7 = -8
x = -8 – 7 = -15
c) | x – 9 | = 7
x – 9 = 7 hoặc x – 9 = -7
x = 7 + 9 hoặc x = -7 + 9
x = 16 hoặc x = 2
d) ( x – 5 )( x + 7 ) = 0
x – 5 = 0 hoặc x + 7 = 0
x = 5 hoặc x = -7
Tìm x biết (x-9). (x+5)<0
tìm x biết:
a)x^2-9-2(x-3)=0
b)x(x-5)-4x+20=0
c)2x^2+3x-5=0
Trả lời:
a, \(x^2-9-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy x = 3; x = - 1 là nghiệm của pt.
b, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
c, \(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}}\)
Vậy x = - 5/2; x = 1 là nghiệm của pt.
TL
a) pt tương đương:
x2−81−x2+6x−9
=0⇔6x
=90⇔x=15
b)
x=4,
x=5
c)
x=-5/2,
x=1
HT
Tìm x, biết:
a) x 2 (x - 5) + 5 - x = 0; b) 3 x 4 - 9 x 3 = -9 x 2 + 27x;
c) x 2 (x + 8) + x 2 = -8x; d) (x + 3)( x 2 -3x + 5) = x 2 + 3x.
tìm x biết :a)x.(x-1/7).(1/9+x)<0
b)4-x/2x-1/5>0
\(x.\left(x-\frac{1}{7}\right)\left(\frac{1}{9}+x\right)< 0\)
có 4 TH ( Trường hợp)
TH1: \(\hept{\begin{cases}x>0\\x-\frac{1}{7}>0\\\frac{1}{9}+x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{7}\\x< -\frac{1}{9}\end{cases}}}\)( vô lí)
TH2:\(\hept{\begin{cases}x>0\\x-\frac{1}{7}< 0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{1}{7}\\x>-\frac{1}{9}\end{cases}\Leftrightarrow}0< x< \frac{1}{7}}\)
TH3:\(\hept{\begin{cases}x< 0\\x-\frac{1}{7}>0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{1}{7}\\x>-\frac{1}{9}\end{cases}}}\)(vô lí )
TH4:\(\hept{\begin{cases}x< 0\\x+\frac{1}{7}< 0\\\frac{1}{9}-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -\frac{1}{7}\\x>\frac{1}{9}\end{cases}}}\)(vô lí)
KL: 0<x<1/7
b) \(\frac{\left(4-x\right)}{2x}-\frac{1}{5}>0\)đk: \(x\ne0\)
<=> \(\left(4-x\right).5-2x.1>0\)
<=> \(20-5x-2x>0\)
<=> \(20-7x>0\)
<=> \(20>7x\Leftrightarrow x< \frac{20}{7}\)
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
Tìm x€ Z , biết:
A/ (2x+10)( x^2 -9)=0
B/ ( x+3)( x-4)<0
C/ ( x+5)(8- x)>0
D/ (|x-5| +1)(|x+1| -2)=0
a) \(\left(2x+10\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\)\(2\left(x+5\right)\left(x^2-3x+3x-9\right)=0\)
\(\Leftrightarrow\)\(2\left(x+5\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\)\(x+5=0\) \(\Leftrightarrow\)\(x=-5\)
hoặc \(x-3=0\) hoặc \(x=3\)
hoặc \(x+3=0\) hoặc \(x=-3\)
Vậy....