so sanh (1/16)^200 va 1/2^1000
so sanh
a) \(\left(\frac{1}{16}\right)^{200}\)va\(\left(\frac{1}{2}\right)^{1000}\)
b) (-32)27 va (-18)39
a, Có : (1/60)^200 = [(1/2)^4]^200 = (1/2)^800
Vì 0 < 1/2 < 1 nên (1/2)^800 > (1/2)^1000
=> (1/16)^200 > (1/2)^1000
Tk mk nha
a) \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{2}\right)^{800}< \left(\frac{1}{2}\right)^{1000}\)
a) \(\left(\frac{1}{16}\right)^{200}=\frac{1}{16^{200}}\)
\(\left(\frac{1}{2}\right)^{1000}=\frac{1}{2^{1000}}\)
có : \(16^{200}=\left(2^4\right)^{200}=2^{800}\)
ta thấy \(2^{800}< 2^{1000}\)
\(\Rightarrow16^{200}< 2^{1000}\)
\(\Rightarrow\frac{1}{16^{200}}>\frac{1}{2^{1000}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{100}\)
so sanh A va B; A=1/2^2+1/2^3+.....+1/2^1000; B=1
so sanh A va B; A=1/2+1/2^2+1/2^3+.....+1/2^1000; B=1
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)
\(A=1-\frac{1}{2^{1000}}< 1=B\)
`Answer:`
Đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
Ta thấy:
\(\frac{1}{1.2}>\frac{1}{2^2}\)
\(\frac{1}{2.3}>\frac{1}{2^3}\)
\(\frac{1}{3.4}>\frac{1}{2^4}\)
...
\(\frac{1}{999.1000}>\frac{1}{2^{1000}}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)
\(\Rightarrow A< 1-\frac{1}{1000}\)
Mà \(\frac{1}{1000}>0\)
\(\Rightarrow1-\frac{1}{1000}< 1\)
\(\Rightarrow C< B\)
\(\Rightarrow A< C< B\)
\(\Rightarrow A< B\)
so sanh 1/35 va 1000/-35
so sánh : \(\dfrac{1}{35}\) và \(\dfrac{1000}{-35}\)
có : \(\dfrac{1000}{-35}\) = \(\dfrac{-1000}{35}\)
\(\Rightarrow\) \(1\) \(>\) (\(-1000\) )
\(\Rightarrow\) \(\dfrac{1}{35}\) \(< \) \(\dfrac{-1000}{35}\)
vậy : \(\dfrac{1}{35}\) < \(\dfrac{1000}{-35}\) hay \(\dfrac{1000}{-35}\) > \(\dfrac{1}{35}\)
so sanh
(-1/16) mu 100 va (-1/2) mu 500
(1/81) mu 12 va (1/27) mu 16
(-2) mu 10 va 1000
2 mu 93 va 5 mu 35
a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)
\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)
mà \(400< 500\)
nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)
So sanh A va B biet A =1×3×5×7ו••×9997×9999 va B=2×4×6ו••×9998×1000
so sanh A= 1/2^2 + 1/3^2 + ....... + 1/100^2 va B= 1/4^2 + 1/6^2 +.... +1/200^2
So sanh A va B biết A=1+2+3+...+1000 va B=1.2.3...11
Nhanh nhất 3 tick nha
A=1+2+3+...+1000
A=(1000+1).1000/2
A=500500
B=1.2.3...11
B=11!
B=39916800
39916800>500500
B>A
so sanh
a, 16 mu 4 va 8 mu 5
b, 27 mu 7 va 9mu 10
c, 2 mu 300 va 3 mu 200
a) 164 = (24)4 = 216
85 = (23)5 = 215
Vì 216>215 nên 164>85
b) 277=(33)7=321
910=(32)10=320
Vì 321>320 nên 277>910
c) 2300=(23)100=8100
3200=(32)100=9100
Vì 8100 < 9100 nên 2300 < 3200
a,164>85
b,277>910
c,2300 <3200
nhé bạn
A
6^4=(2^4}^1=+2^64
8^5=(2^2}^5=2^1O
64 lớn hơn 1O
nên 2^64 lớn hơn 2^1O
vậy 6^4 lớn hơn 8^5
b
27^7=(3^3}^7=3^21
9^1O=(3^2}^1O=3^2O
21 lớn hơn 2O
nên 3^21 lớn hơn 3^2O
vậy 27^7 lớn hơn 9^1O
c
2^3OO=2^3.1OO=6^1OO
3^2OO=3^2.1OO=6^1OO
1OO=1OO
nên 6^1OO=6^1OO
vậy 2^3OO=3^2OO