Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Nguyen Hang
Xem chi tiết
trần dương từ thứ
Xem chi tiết
Đỗ Lê Tú Linh
2 tháng 6 2015 lúc 20:48

đề là :\(\frac{x-2}{x+1}=\frac{5}{2x}-1-1\) hay \(x-\frac{2}{x+1}=\frac{5}{2x}-1-1\) ?

Hà Hồng Anh
Xem chi tiết
VN in my heart
Xem chi tiết
Huỳnh Minh Nghĩa
Xem chi tiết
fairy
25 tháng 6 2017 lúc 8:31

đặt \(x+\frac{1}{x}=a;y+\frac{1}{y}=b\)

\(\Leftrightarrow\hept{\begin{cases}a+b=4\\\left(x^2+2+\frac{1}{x^2}\right)\end{cases}+\left(y^2+2+\frac{1}{y^2}\right)=8}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=4\\a^2+b^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=16\\a^2+b^2=8\end{cases}}}\)

\(\Leftrightarrow2ab=8\Leftrightarrow ab=4\)

a;b sẽ là nghiệm của phương trình:

X2-4X+4=0

<=>(X-2)2=0

<=>X=2

<=>a=b=2

\(\Leftrightarrow x+\frac{1}{x}=y+\frac{1}{y}=2\)

Giải phương trình=>x=y=1

Vậy nghiệm của hê phương trình:(x;y)=(1;1)

Thiên An
25 tháng 6 2017 lúc 10:26

Mình có cách khác là dùng BĐT để giải

ĐK: x, y khác 0

Áp dụng BĐT  \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)   với mọi a, b thực. Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{\left(x+y\right)^2}{2}+\frac{\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{4}=\frac{4^2}{4}=4\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\x+y+\frac{1}{x}+\frac{1}{y}=4\end{cases}}\)   \(\Leftrightarrow\)   \(x=y=1\)

Vậy nghiệm của HPT là (x;y) = (1;1)

nguyen ha
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
phan tuấn anh
24 tháng 9 2016 lúc 10:16

1) ĐẶT \(\sqrt{x^2+1993}=y\)

==> \(1993=y^2-x^2\)

khi đó pt trở thành \(x^4+y=y^2-x^2\)

<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)

<=> \(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)

<=> \(\left(x^2+y\right)\left(x^2-y+1\right)=0\)

đến đây bạn giải nốt nhé 

phan tuấn anh
24 tháng 9 2016 lúc 10:16

còn câu 2 thì liên hợp mẫu như bài trên mk làm 

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Phan Thành Tiến
19 tháng 7 2018 lúc 7:59

a)\(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)-\(\frac{1}{x}\)\(\Leftrightarrow\)\(\frac{1}{a+b-x}\)+\(\frac{1}{x}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(\frac{x+a+b-x}{x\left(a+b-x\right)}\)=\(\frac{a+b}{ab}\)

\(\Leftrightarrow\)\(\frac{a+b}{xa+xb-x^2}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(xa+xb-x^2\)=\(ab\)\(\Leftrightarrow\)\(xa+xb-x^2-ab\)=\(0\)

\(\Leftrightarrow\)\(a\left(x-b\right)-x\left(x-b\right)=0\)\(\Leftrightarrow\)\(\left(x-b\right)\left(a-x\right)=0\)\(\Leftrightarrow\)\(x=b;x=a\)

b) \(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)=\(\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}-\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}\)=\(\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}-\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a+1\right)}\left(\frac{1}{x+a-1}-\frac{1}{x-a-1}\right)\)=\(\frac{1}{x-a+1}\left(\frac{1}{x+a-1}-\frac{1}{x+a+1}\right)\)\(\Leftrightarrow\)\(\frac{1}{x+a+1}.\frac{-2a}{\left(x+a-1\right)\left(x-a-1\right)}=\frac{1}{x-a+1}.\frac{2}{\left(x+a-1\right)\left(x+a+1\right)}\)(Quy dong phan so ttrong dau ngoac)

\(\Leftrightarrow\)\(\frac{-2a}{x-a-1}=\frac{2}{x-a+1}\)\(\Leftrightarrow\)\(-2a\left(x-a+1\right)=2\left(x-a-1\right)\)\(\Leftrightarrow\)\(-ax+a^2-a=x-a-1\)\(\Leftrightarrow\)\(-ax-x+a^2-1=0\)\(\Leftrightarrow\)\(\left(a+1\right)\left(-x+a-1\right)=0\)

neu a+1=0 thi phuong trinh co vo so nghiem, neu a+1\(\ne\)0 thi x=a-1

Võ Thiên Long
Xem chi tiết
Thuý An Nguyễn Thị
30 tháng 7 2019 lúc 12:35

Đề câu c ptrinh = 4 là phải riêng ra chứ

Vy Thị Hoàng Lan ( Toán...
30 tháng 7 2019 lúc 13:02

\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)

\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)

\(\Rightarrow3x+2=2\left(x+2\right)\)

\(\Rightarrow3x+2=2x+4\)

\(\Rightarrow3x-2x=4-2\)

\(\Rightarrow x=2\)

\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)

\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Rightarrow2\sqrt{x-2}=4\)

\(\Rightarrow\sqrt{x-2}=2\)

\(\Rightarrow x-2=4\)

\(\Rightarrow x=6\)

\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)

\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)

\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)

\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)

\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)

\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)

\(\Rightarrow2x^2+7x=0\)

\(\Rightarrow x\left(2x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)

\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)

\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)

\(\Rightarrow x=1\)

Thuý An Nguyễn Thị
30 tháng 7 2019 lúc 13:27

b) \(\sqrt{2x+1}.\sqrt{2x-1}-2\sqrt{2x+1}=0\)đkxđ: x>= 1/2

<=> \(\sqrt{2x+1}.\left(\sqrt{2x-1}-2\right)=0\)

<=> \(\sqrt{2x-1}-2=0\)

<=> \(\sqrt{2x-1}=2\)

<=> \(2x-1=4\)
<=> x=5/2 ( tm đkxđ)
Vậy x=5/2