cho tam giác ABC ,A=90* BIẾT AB+AC=49 CM,AB-AC =7CM
TINH BC
1.Cho tam giác ABC nhọn, vẽ đường cao AH. Tính chu vu của tam giác ABC, biết AC = 13cm, AH = 12 cm, BH = 9cm
2. Cho tam giác ABC, góc A = 90 độ. BIết AB + AC = 49 cm; AB - AC = 7cm. Tínnh BC
3. Cho tam giác ABC, AB = AC =17 cm. Kẻ BD vuông góc với AC. Tính BC biết BD = 15cm
Cho tam giác ABC vuông tại A, biết AB+ AC= 49 cm, AB-AC=7 cm. Tính BC?
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)
bạn Phan Bá Lộc copy bài của mk ak
Cho tam giác ABC vuông tại A biết AB+AC=49 cm , AB-AC=7cm . tính BC
đề bài sai nha
AC=AB=7
Mà AB+AC=49
Vô lý
Ta có AB = ( 49 + 7 ) : 2 = 28 ( cm )
AC = 49 - 28 = 21 ( cm )
Trong tam giác ABC , áp dụng định lí Py - ta - go ta có :
AB2 + AC2 = BC2
-> 282 + 212 = BC2
-> BC2 = 1255
-> BC = \(\sqrt{1255}\)= 35 ( cm )
Vậy BC = 35 cm
Ta có: AB = (49 + 7 ) : 2 = 28 (cm)
AC = 49 - 28 = 21 (cm)
Trong tam giác ABC , áp dụng định lí Py - ta - go ta có:
AB2 + AC2 = BC2
\(\Rightarrow\)282 + 212 = BC2
\(\Rightarrow\)BC2 = 1225
\(\Rightarrow\)BC = \(\sqrt{1225}\)= 35 (cm)
Vậy BC = 35cm
~ HOK TỐT ~
1) Cho tam giác nhọn ABC có AB = 13 cm , AC = 15 cm . Kẻ AD vuông góc với BC ( D thuộc BC ) . Biết BD = 5 cm , hãy tính CD
2) Cho tam giác ABC , góc A = 90 độ , biết AB + AC = 49 cm , AB - AC = 7 cm . Tính cạnh BC
mình cần gấp 2 bài này
Ta có: AB=13 cm
BD=5 cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABD
AB^2=BD^2+AD^2
=> AD^2=AB^2-BD^2=13^2-5^2=144
=> AD=\(\sqrt{144}=12cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông ADC
AC^2=AD^2+DC^2
=> DC^2=AC^2-AD^2=15^2-12^2=81
DC=\(\sqrt{81}=9cm\)
Câu 2 từ từ
Hình tự vẽ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Théo đề ta có: AB+AC=49
AB-AC=7
=> AB=(49+7)/2=28 cm
AC=28-7=21 cm
Áp dụng định lí Py ta go vào tam giác vuông ABC
BC^2=AC^2+AB^2=28^2+21^2=1225
BC=\(\sqrt{1225}=35cm\)
2) ta có AB+AC=49,AB-AC=7
=> AB=(49+7):2=28cm,AC=(49-7):2=21cm
tam giác ABC vuông tại A=> BC^2=AB^2+AC^2 (Pitago)
=> BC^2=28^2+21^2=1225
=> BC=căn 1225=35cm
1) Cho tam giác nhọn ABC có AB = 13 cm , AC = 15 cm . Kẻ AD vuông góc với BC ( D thuộc BC ) . Biết BD = 5 cm , hãy tính CD
2) Cho tam giác ABC , góc A = 90 độ , biết AB + AC = 49 cm , AB - AC = 7 cm . Tính cạnh BC
mình cần gấp 2 bài này
1) Áp dụng định lý Py-ta-go cho tam giác vuông ABD, ta có:
AD2 + BD2 = AB2 => AD2 + 52 = 132 => AD2 = 132 - 52 = 169 - 25 = 144 = 122 => AD = 12 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ADC, ta có:
AD2 + DC2 = AC2 => 122 + DC2 = 152 => DC2 = 152 - 122 = 225 - 144 = 81 = 92 => CD = 9
2) AB = (49 + 7) : 2 = 28 cm
AC = 28 - 7 = 21 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2 = 282 + 212 = 352 => BC = 35 cm
1. Cho tam giác ABC, góc A = 90 độ, có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
2. Cho hình thang cân ABCD (AD//BC). Biết AB = 12 cm, AC = 16 cm và BC = 20 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)
Cho tam giác ABC có góc A = 90 độ, AH vuông góc với BC. Biết AH =2 căn 3 cm, AB/AC= căn 3. Tính BH; CH; AB; AC.
Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)
\(\Leftrightarrow HB=3\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow3\cdot HC=12\)
hay HC=4(cm)
\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)
\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)
1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .
2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.
3. Tính cạnh đáy BC của tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.
4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.
5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.
a, Chứng minh tam giác ABC vuông ở A;
b, Kẻ AH vuông góc với BC. Tính AH .
6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d.
7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :
a, A là trung điểm của DE
b, DHE=90 độ
8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA.
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Bài 3:
Vì tam giác ABC cân tại A (gt) nên AB = AC
Mà AC = AH + HC
Hay AC= 8 + 3 = 11 (cm)
Nên AB = 11 (cm)
..........
( Phần này áp dụng định lý Py-ta-go vào tam giác và làm giống như bài 2 vậy nên mình không giải lại nữa nha bạn ) ( ^ o ^ )
Cho tam giác ABC ; góc A = 90 độ có AB/AC = 3/4 , BC = 15 cm . Tinh AB , AC
Ta có:tam giác ABC có góc A=90 độ
=>Tam giác ABC vuông tại A.
Ta có:AB/AC=3/4 =>AB/3=AC/4
ÁP DỤNG T/C DÃY TỈ SỐ BĂNG NHAU.TA CÓ
AB/3=AC/4=AB2+AC2/32+42=152/9+16=225/25=9
=>AB=
=>AC=
Bạn hãy tính đi nhé