Chứng minh rằng a + b + c > 0 , abc > 0 , ab + bc + ca > 0 thì a>0 , b>0 , c>0
Cho ab+bc+ca=0, abc khác 0. Chứng minh rằng (a+b)(b+c)(c+a)+abc=0
Chứng minh nếu a+b+c >0 và ab+bc+ca>0 và abc>0 thì a>0, b>0,c>0
Cho ab+bc+ca=0. Chứng minh rằng (a+b)+(b+c)+(c+a)+abc=0
Cho ab+bc+ca=0. Chứng minh rằng (a+b)(b+c)(c+a)+abc=0
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca < 0 hoặc = 0
Chứng minh rằng nếu a, b, c là ba số thỏa mãn điều kiện:
\(\hept{\begin{cases}abc>0\\a+b+c>0\\ab+bc+ca>0\end{cases}}\)
thì a, b, c là các số dương.
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0
cho \(\begin{cases}a+b+c>0\\ab+bc+ca>0\\abc>0\end{cases}\)
chứng minh rằng \(a,b,c>0\)
Giả sử ngược lại, trong 3 số a , b , c có ít nhất 1 số \(\le0\). Vì a, b, c vai trò như nhau, nên ta có thể xem \(a\le0\)
Khi đó : \(abc>0\Rightarrow\)\(a<0,bc<0\)
\(\Rightarrow a\left(b+c\right)=ab+ac>-bc>0\)
\(\Rightarrow a\left(b+c\right)>0\)
\(\Rightarrow b+c<0\) ( Vì chứng minh trên có a < 0 )
\(\Rightarrow a+b+c<0\Rightarrow\) vô lí
Vậy \(a,b,c>0\)