Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Tịnh
Xem chi tiết
Phan Thanh Tịnh
5 tháng 4 2017 lúc 20:22

a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật

b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON

\(\Rightarrow\Delta OAN\)cân tại O (1)

Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)

\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)

c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC

Phan Thanh Tịnh
5 tháng 4 2017 lúc 21:06

d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI

\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)

Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN

Tri Nguyenthong
8 tháng 4 2017 lúc 21:40

lm trò j thế

sus man11
Xem chi tiết
Nguyễn Minh Quang
24 tháng 10 2021 lúc 19:03

a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A

nên tâm đường tròn ngoại tiếp ABC là trung điểm BC

b. khi đó R = BC/2 =13/2 cm

khoảng cách từ tâm đến AC là :

\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)

Khách vãng lai đã xóa
Huu Cu
Xem chi tiết
Danh Thanh
Xem chi tiết
Nguyễn Thị Thủy
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 1 2019 lúc 19:11

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

Minh Nguyet Truong
Xem chi tiết
Quốc Huy
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 10 2021 lúc 12:29

a) Ta có: \(\left\{{}\begin{matrix}BD=AD\\CE=AE\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow BD+CE=AD+AE=ED\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOD}=\dfrac{1}{2}\widehat{AOB}\\\widehat{AOE}=\widehat{EOC}=\dfrac{1}{2}\widehat{AOC}\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\widehat{DOE}=\widehat{AOD}+\widehat{AOE}=\dfrac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\dfrac{1}{2}.180^0=90^0\)

(Do \(\widehat{AOB},\widehat{AOC}\) là 2 góc kề bù)

c) Gọi K là trung điểm DE

Ta có: \(DB\perp BC,EC\perp BC\Rightarrow BD//EC\)

\(\Rightarrow BDEC\) là hình thang

Ta có: Tam giác ABC vuông tại A nội tiếp đường tròn (O)

=> O là trung điểm cạnh huyền BC

Xét hthang BDEC có:

O là trung điểm BC(cmt)

K là trung điểm DE(cách vẽ)

=> OK là đường trung bình

\(\Rightarrow\left\{{}\begin{matrix}OK//EC\\OK=\dfrac{1}{2}\left(BD+EC\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}OK=\dfrac{1}{2}DE=DK\\OK\perp BC\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}O\in\left(K\right)\\OK\perp BC\end{matrix}\right.\) => BC là tiếp tuyến đường tròn (K)

 

Lê Song Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
7 tháng 12 2021 lúc 9:33

a/ Gọi D là trung điểm BC; E là trung điểm AC 

Từ D dựng đường thẳng vuông góc với BC

Từ E dựng đường thẳng vuông góc với AC

Hai đường thẳng trên cắt nhau tại O là tâm đường tròn ngoại tiếp tg ABC (Trong tg 3 đường trung trực đồng quy tại 1 điểm và điểm đó là tâm đường tròn ngoại tiếp tam giác)

Ta có \(AH=2.OD\Rightarrow\frac{OD}{AH}=\frac{1}{2}\) (trong tg khoảng cách từ 1 đỉnh đến trực tâm bằng 2 lần khoảng cách từ tâm đường tròn ngoại tiếp đến cạnh đối diện) (Bạn phải c/m bài toán phụ trên, bạn tự tham khảo trên mạng nhé)

Ta có \(AH\perp BC;OD\perp BC\) => OD // AH

\(\Rightarrow\frac{OG}{HG}=\frac{OD}{AH}=\frac{1}{2}\) (Talet trong tam giác) \(\Rightarrow HG=2.OG\left(dpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh Minh
7 tháng 12 2021 lúc 9:38

Xin lỗi trên là câu b

Câu a

Nối AD cắt HO tại G đến đoạn cm được \(\frac{OD}{AH}=\frac{1}{2}\) và OD//AH

\(\Rightarrow\frac{GD}{GA}=\frac{OD}{AH}=\frac{1}{2}\) => G là trọng tâm của tg ABC => H, G, O thẳng hàng

Khách vãng lai đã xóa
Nguyen Quang Duy
Xem chi tiết