TÍNH :
1 /1 * 2+1/2*3+1/3*4+......+1/999*1000+1
A=1/1×2+1/3×4+1/4×5+...1/999×1000
B=1/501×1000+1/502×999+...+1/999×502+1/1000×501
Tính A/B
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
Tính tổng: 1/1*2+1/2*3+1/3*4+...+1/999/1000+1
= (1/1 -1/2) + (1/2-1/3) + (1/3x1/4)+...+(1/999- 1/1000)
= 1/1- 1/1000
= ...[bn tự tính nhé]
k mk nha, nếu đúng
\(\text{Đề bạn bị sai thì phải ????? Đề đúng phải là }:\)
\(\frac{1}{1\text{ x }2}+\frac{1}{2\text{ x }3}+\frac{1}{3\text{ x }4}+...+\frac{1}{999\text{ x }1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
Tính tổng:1/1*2 + 1/2*3 + 1/3*4 + .....+1/999*1000 + 1
1/1x2+1/2x3+1/3x4+...
= 1/1-1/2+1/2-1/3+1/3-1/4+...
= 1-1/4
=3/4
K nhé
bạn trả lời đúng rồi nhưng giúp mình phần sau nữa nhé !
ARIGATO
1/1x2+1/2x3+...+1/999x1000+1
= 1+ (1/1-1/2+1/2-1/3+...+1/999-1/1000)
= 1 + ( 1-1/1000)
= 1 + 999/1000
= 1999/1000
K mk nhé bn
Tính tổng sau:1/1*2+1/2*3+1/3*4...+1/999*1000=?
Tính tổng sau:1/1*2+1/2*3+1/3*4+...+1/999*1000+1
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{999}-\frac{1}{1000}+1\)
=\(\frac{1}{1}-\frac{1}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(1-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(\frac{1}{1}-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
= \(\frac{999}{1000}+\frac{1000}{1000}\)
= \(\frac{1999}{1000}\)
tính tổng sau : 1/1*2 + 1/2*3 + 1/3*4 + ........+1/999*1000 + 1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1=\frac{1999}{1000}\)
tính tổng sau:1/1*2+1/2*3+1/3*4+.......+1/999*1000+1
Tính tổng sau: 1/1*2 + 1/2*3 + 1/3*4 +.................+1/999*1000+1=
1/2*2+1/2*3+...+1/999*1000+1
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000+1
=1+1-1/1000
=1999/1000
1/1 - 1/1000 + 1 = 1999/1000
đúng 100% đó bạn , nha
\(\frac{1}{1x2}+\frac{1}{2x3}+.................+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.............+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)