Cho \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{6}\)Tinh M= \(\frac{2x+3y+4z}{3x+4y+5z}\)
CHo \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\)Tinh \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
Cho \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\)
Tinh: M =\(\frac{2x+3y+4z}{3x+4y+5z}\)
Cho\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\).Tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)
từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)
thay x=15k, y=20k, z=24k vào M ta có:
\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)
vậy M=\(\frac{186}{245}\)
Cho \(\frac{x}{3}=\frac{y}{4}\) và \(\frac{y}{5}=\frac{z}{6}\) Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
Vì \(\frac{x}{3}\) = \(\frac{y}{4}\) => \(\frac{x}{15}\) = \(\frac{y}{20}\)
\(\frac{y}{5}\) = \(\frac{z}{6}\) => \(\frac{y}{20}\) = \(\frac{z}{24}\)
nên \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)
Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k
=> x = 15k; y = 20k và z = 24k
Thay vào M ta đc:
M = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)
= \(\frac{30k+60k+96k}{45k+80k+120k}\)
= \(\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)
= \(\frac{186k}{245k}\) = \(\frac{186}{245}\)
Vậy M = \(\frac{186}{245}\).
Tìm x , y , z :
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
b) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{x-5}{6}\)và 5x - 3y - 4z = 46
c) \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
d) \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\)và 3x - 2y + 5z = 96
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)
Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)
Cho \(\frac{x}{3}=\frac{y}{4}và\frac{y}{5}=\frac{z}{6}\)Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
Vì \(\frac{x}{3}=\frac{y}{4}=>x=\frac{3}{4}y\)
\(\frac{y}{5}=\frac{z}{6}=>z=\frac{6}{5}y\)
Ta có
\(M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.\frac{3}{4}y+3y+4.\frac{6}{5}y}{3.\frac{3}{4}y+4y+5.\frac{6}{5}y}=\frac{\frac{93}{10}y}{\frac{49}{4}y}=\frac{93}{10}:\frac{49}{4}=\frac{186}{245}\)
Cho \(\frac{x}{3}=\frac{y}{4}vs\frac{y}{5}=\frac{6}{6}\) .Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\). tính M = \(\frac{2x+3y+4z}{3x+4y+5z}\)
Giải:
Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=24k\end{cases}}\)
\(\Rightarrow M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)
bạn tự tính nốt nhé
Mình giải tiếp cho:
\(M=\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}=\frac{186k}{245k}=\frac{186}{245}\)
Vậy \(M=\frac{186}{245}\)
Ta có :
\(\frac{x}{3}=\frac{y}{4}\) \(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{6}\)\(\Rightarrow\)\(\frac{y}{20}=\frac{z}{24}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=24k\end{cases}}\)
\(\Rightarrow M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{k.\left(30+60+96\right)}{k.\left(45+80+120\right)}=\frac{186k}{245k}=\frac{186}{245}\)
Vậy \(M=\frac{186}{245}\)
Cho \(\frac{3}{x+3}=\frac{4}{y+4}\) và \(\frac{y+10}{5}=\frac{z+12}{6}\)
Tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
Ta có \(\frac{3}{x+3}=\frac{4}{y+4}\Rightarrow3\left(y+4\right)=4\left(x+3\right)\Rightarrow3y=4x\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Tương tự \(\frac{y+10}{5}=\frac{z+12}{6}\Rightarrow6\left(y+10\right)=5\left(z+12\right)\Rightarrow6y=5z\Rightarrow\frac{y}{5}=\frac{z}{6}\)
Từ đó ta có \(\frac{x}{15}=\frac{y}{20}=\frac{z}{16}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{16}=t\Rightarrow\hept{\begin{cases}x=15t\\y=20t\\z=16t\end{cases}}\)
Vậy thì \(M=\frac{2.15t+3.20t+4.16t}{3.15t+4.20t+5.16t}=\frac{154t}{205t}=\frac{154}{205}.\)