Tìm các số nguyên x, y thỏa mãn 1/y-2=x/2y
Tìm các số nguyên x,y thỏa mãn 1/y-2=x/2y
Biến đổi biểu thức tương đương, ta có : x2−12=y2x2−12=y2
Lại có : x,y nguyên dương.
⇒x>y⇒x>y và x phải là số lẽ.
Từ đó đặt x=2k+1x=2k+1 (k nguyên dương)
Ta có biểu thức tương đương : 2k(k+1)=y2(∗)2k(k+1)=y2(∗)
Để ý rằng: y là 1 số nguyên tố nên y2y2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy y2⋮2⇒y=2⇒k=1⇒x=3y2⋮2⇒y=2⇒k=1⇒x=3
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
tìm các số nguyên x;y thỏa mãn
2y^2x+x+y+1=x^2+2y^2+xy
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n
Tìm các số nguyên x,y thỏa mãn 1/y-2=x/2y
Tìm các số nguyên x,y thỏa mãn 1/y-2=x/2y
Ta có: \(\frac{1}{y-2}\)= \(\frac{x}{2y}\)
\(\Rightarrow\)2y = xy - 2x
\(\Rightarrow\)xy - 2x - 2y + 4 = 4
x(y - 2) - 2( y -2) =4
( x - 2) ( y - 2) =4
đến đấy bạn xét các trường hợp của x và y
nhớ bấm đúng cho mình nhé!
tìm các số nguyên x y thỏa mãn 2xy^2+x+y+1=x^2+2y^2+xy
tìm các số nguyên x,y thỏa mãn x^2-(y-3)x-2y-1=0
tìm các số nguyên x,y thỏa mãn x^2-(y-3)x-2y-1=0
tìm các số nguyên x,y thỏa mãn x^2-(y-3)x-2y-1=0
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow y\left(x+2\right)=x^2+3x-1\)
Dễ thây \(x\ne-2\)
\(\Rightarrow y=\frac{x^2+3x-1}{x+2}=x+1-\frac{3}{x+2}\)
Để y nguyên thì x + 2 là ươc của 3 hay
\(\left(x+2\right)=\left\{-3;-1;1;3\right\}\)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow x^2-xy+3x-2y-1=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(2x-2y\right)+x-1=0\)
\(\Leftrightarrow x\left(x-y\right)+2\left(x-y\right)+\left(x+2\right)-3=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-y\right)+\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-y+1\right)=3\)
Ta có x, y \(\in\) Z nên x + 2 là ước của 3 \(\Rightarrow x+2\in\left\{1;3;-1;-3\right\}\). Ta có bảng sau:
| x + 2 | x - y + 1 | x | y |
| 1 | 3 | -1 | -3 |
| 3 | 1 | 1 | 1 |
| -1 | -3 | -3 | 1 |
| -3 | -1 | -5 | -3 |
gwdhj HJxucLXZJvl.dmq