Tin so nguyen n biet rang : n-4 chia het cho n-1
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
tim so nguyen n biet
3n - 2 chia het cho 2n - 1
n + 3 chia het cho n - 4
tim so nguyen n biet
6n - 4 chia het cho 2n + 1
3 - 2n chia het cho n + 1
chung minh rang voi moi so nguyen n thi n(n^2+1)(n^2+4) chia het cho 5
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
tim so nguyen n biet
3n+4 chia het cho n+1
\(3n+4⋮n+1\)
\(\Rightarrow\left(3n+3\right)-3+4⋮n+1\)
\(\Rightarrow\left(3n+3.1\right)+1⋮n+1\)
\(\Rightarrow3.\left(n+1\right)+1⋮n+1\) có \(n+1⋮n+1\Rightarrow3.\left(n+1\right)⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\) mà \(n\in Z\)
\(\Rightarrow n+1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{0;-2\right\}\)
vậy______
* Ta có: 3n+4 : n+1
=> ( 3n+4) - ( n+1) : n+1
=> ( 3n+4) - 3(n+1) : n+1
=> 3n + 4 -3n - 1: n+1
=> 3: n+1
=> n+1 thuộc Ư(3) = { 1; -1; 3; -3}
=> n thuộc {0; -2; 2; -4}
Tim so nguyen n biet 3n-1 chia het cho n-2
3n - 1 ⋮ n - 2
<=> 3n - 6 + 5 ⋮ n - 2
<=> 3(n - 2) + 5 ⋮ n - 2
=> 5 ⋮ n - 2
Hay n - 2 ∈ Ư(5) = { ± 1; ± 5 }
Ta có bảng sau :
n - 2 | - 5 | - 1 | 1 | 5 |
n | - 3 | 1 | 3 | 7 |
Vậy x = { - 3; 1 ; 3 ; 7 }
tim so nguyen n biet (n-7) chia het cho (2n+1)
Lời giải:
$n-7\vdots 2n+1$
$\Rightarrow 2(n-7)\vdots 2n+1$
$\Rightarrow 2n+1-15\vdots 2n+1$
$\Rightarrow 15\vdots 2n+1$
$\Rightarrow 2n+1\in \left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2; 2; -3; 7; -8\right\}$
Bai 6 :
Cho A = 1+3+32+33+....+310.Tim so tu nhien n biet : 2A + 1 = 3n
Bai 7 :
Chung minh rang voi moi so nguyen duong n ta co : (2.7n+1) chia het cho 3
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11