\(\frac{x}{x-a}-\frac{2a}{x+a}=\frac{8a^2}{x^2-a^2}\)
GPT
a) \(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)(a là hằng)
b) \(\frac{2a-3b}{x-2a}+\frac{3b-2a}{x-3b}=0\)(a và b là hằng)
giải và biện luận phương trình :
\(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)
\(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\) \(\left(ĐK:x\ne\pm2a\right)\)
\(\Leftrightarrow\)\(\frac{x\times\left(2a-x\right)}{\left(2a-x\right)\times\left(2a+x\right)}+\frac{\left(2a+x\right)^2}{\left(2a-x\right)\times\left(2a+x\right)}\)= \(\frac{-8a^2}{\left(2a+x\right)\times\left(2a-x\right)}\)
\(\Rightarrow\) \(\left(2a-x\right)\)\(\times\)\(x+\) \(\left(2a+x\right)^2\)
\(\Leftrightarrow2ax-x^2+4a^2+4ax+x^2=-8a^2\)
\(\Leftrightarrow6ax=-12a^2\)
\(với6a\ne0\Leftrightarrow a\ne0\)
\(\Rightarrow\)PHƯƠNG TRÌNH CÓ NGIỆM DUY NHẤT LÀ \(X=-2a\)( LOẠI )
\(vớia=0\Leftrightarrow0\times x=-12\times0\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow\)PHƯƠNG TRÌNH CÓ NGIỆM ĐÚNG VỚI MỌI X
VẬY VỚI \(a\ne0\), PHƯƠNG TRÌNH VÔ NGIỆM
VỚI \(a=0\), PHƯƠNG TRINGF CÓ NGHIỆM ĐUNG VỚI MỌI X
sai roi x phai khac 0
\(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x-4a^2}\)GPT bên và tìm ĐKXĐ
Cho \(x=\sqrt{6+2\sqrt{2}.\left(\sqrt{\frac{5}{2}-\sqrt{6}+\sqrt{\left(3\sqrt{a}+1\right)\left(2a-2\right)-\frac{6a^2+6\sqrt{a}-8a-4a\sqrt{a}}{\sqrt{a}-1}+8}}\right)}\) với a là số thực không âm
\(y=\frac{\frac{x-2}{x}+\frac{1}{x-2}}{12-8\sqrt{5}}.\left(-16\right)\)
So sánh x và y
Rút gọn: \(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+\frac{a}{x^2+7ax+12a^2}+\frac{a}{x+4a}\)
Cho :\(A=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x+3};B=\frac{a}{x\left(x+a\right)}+\frac{a}{\left(x+a\right)\left(x+2a\right)}+\frac{a}{\left(x+2a\right)\left(x+3a\right)}+\frac{1}{x+3a}\)CMR : A = B
Rút gọn : \(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+\frac{a}{x^2+7ax+12a^2}\)\(+\frac{a}{x+4a}\)
ta có
\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)-\left(x-2019\right)^2}=\frac{19}{49}\) ( điều kiện : x khác : 2018;2019 )
đặt a = x - 2019 ( a khác 0 )
ta có hệ thức :
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\\ \Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\\ \left(2a+1\right)^2-4^2=0\\ \Leftrightarrow\left(2a+3\right)\left(2a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4041}{2}\\x=\frac{4033}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
vậy \(x\in\left\{\frac{4041}{2};\frac{4033}{2}\right\}\)
1.Thực phép tính nhanh
\(\frac{1}{x}\)+\(\frac{1}{x\left(x+1\right)}\)+\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)+....+\(\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
2: cho biểu thức :
A=\(\frac{x^2-2x+1}{x-1}\)+\(\frac{x^2+2x+1}{x+1}\)-3
a)Tìm điều kiện đê giá trị của biểu thức A được xác định
b)Rút gọn biểu thức A
c)Tính giá trị của A khi x =3
d)Tìm x khi A= -2
3)Tính
a)\(\frac{-1}{2-3x}\)+\(\frac{5}{3x-2}\) b)\(\frac{2a-1}{2a+1}\)-\(\frac{2a-3}{2a-1}\)c)\(\frac{2}{x+3}\)+\(\frac{3}{x^2-9}\)d)\(\frac{a^2-2a+1}{a^2-a}\)-\(\frac{2a^3-a^2}{a^4+a^3}\)
e)\(\frac{x^2+2}{x}\)-\(\frac{2x+2}{x}\)f)\(\frac{x+3}{x^2-y^2}\)-\(\frac{3-y}{x^2-y^2}\)g)\(\frac{5x+4}{3x+15}\)+\(\frac{x-2}{x+5}\)h)\(\frac{x+4}{2x+4}\)-\(\frac{x-2}{x^2-4}\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2