Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Huyền
Xem chi tiết
Nguyễn Thị Khánh Huyền
Xem chi tiết
Nguyễn Kiều Trang
Xem chi tiết
Cao Van Minh
23 tháng 5 2017 lúc 19:25

kkkkkkkkkkkkkkkkkk

Cao Van Minh
23 tháng 5 2017 lúc 19:27

wopdjoqwedi

Trà My
23 tháng 5 2017 lúc 23:35

Ta có:

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)

=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)

=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016

Kha Mai
Xem chi tiết
Hoàng Phan
31 tháng 10 2017 lúc 15:06

A= |x-2016| + |x-2017|

=> A= |x-2016| + |2017-x|

Ta có: |x-2016| ≥ x-2016 \forall  x. Dấu bằng xảy ra khi x-2016 ≥ 0

            |2017-x| ≥ 2017-x \forall x. Dấu bằng xảy ra khi 2017-x ≥ 0

=> |x-2016| + |2017-x| ≥ x-2016+2017-x \forall  x

=> A ≥ 1 \forall  x

Dấu "=" xảy ra khi x-2016 ≥ 0 và 2017-x ≥ 0

                          =>x ≥ 2016 và -x ≥ -2017

                          => x ≥ 2016 và x ≤ 2017

                          => 2016 ≤ x ≤ 2017

Vậy giá trị nhỏ nhất của A là 1 tại 2016 ≤ x ≤ 2017.

Carthrine Nguyễn
Xem chi tiết
Edowa Conan
19 tháng 9 2016 lúc 17:04

Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)

         Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)

      Dấu = xảy ra khi x-7=0;x=7

                                 x+2016=0;x=-2016

                                 x-2017=0;x=2017

Vậy Min A=0 khi x=7;-2016;2017

Nguyễn Phạm Thanh Nga
20 tháng 3 2018 lúc 20:14

A = |x-7|+|x-2016|+|x-2017|

= |x-7|+|x-2016|+|2017-x|

≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017

để A nhỏ nhất => A = 2017

=> |x - 2016| = 0 => x = 2016

Trang nguyễn
Xem chi tiết
oOo NhỎ tHiêN cHỉ HạC oO...
Xem chi tiết
Nịna Hatori
27 tháng 7 2017 lúc 17:03

- Ta có: \(\left|x+1\right|\ge0\forall x\)

\(\left|x+2\ge0\forall x\right|\)

......

\(\left|x-2017\ge0\forall x\right|\)

- Suy ra: \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+.....+\left|x+2017\right|\ge0\forall x\)

=> \(\left|x+1\right|+\left|x+2\right|+....+\left|x+2017\right|+100\ge100\forall x\)

- Dấu bằng xảy ra khi

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+2017\right|=0\)

- Suy ra : Giá trị nhỏ nhất của A ( MinA) = 100

<=> \(\left|x+1\right|+\left|x+2\right|+...+\left|x+2017\right|=0\).

VRCT_Mối Tình Mùa Đông_S...
Xem chi tiết
Nguyễn Thành Long
15 tháng 3 2017 lúc 21:35

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

lutufine 159732486
Xem chi tiết