Cho hình vuông ABCD. Lấy điểm E bất kì thuộc BC. Kẻ tia Ax vuông góc với AE cắt tia CD ở F. Gọi H là trung điểm của EF, AH cắt CD tại M.
a) Chứng minh tam giác AEF cân
b) Kẻ EK//CD (K thuộc AM). Chứng minh EKFM là hình thoi.
c) Chứng minh FA2 =CF.FM
Cho hình vuông ABCD, E là điểm bất kỳ trên BC. Kẻ Ax vuông góc với AE cắt CD tại F. I là trung điểm của EF. AI giao CD tại M. Kẻ EK song song với CD cắt AI tại K. Chứng minh tam giác AEF vuông cân, MEKF là hình gì?
Cho hình vuông ABCD. Gọi E là một điểm trên BC. Qua A kẻ tia Ax vuông góc với AE, Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.
Chứng minh
a)AE = AF và EGFK là hình thoi.
b)EK=BE+DK va tính chu vi EKC.
c) EF^2=EK.FC
Ta có
góc FAD+DAE=90•
DAE+EAB=90•
-> FAD=EAB
xet tam giác AEB và tam giác ADF có
AB=AD( ABCD là hình vuông)
ABE=ADF=90•
FAD=EAB
suy ra tam giac ABE=tam giác ADF(g.c.g)
-> AF=AE
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A cắt CD kéo dài tại F. Kẻ trung tuyên AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a, Chứng minh AE = AF
b, Chứng minh các tam giác AKF, CAF đồng dạng và A F 2 = K F . C F
c, Cho AB = 4 cm, BE = 3 4 BC. Tính diện tích tam giác AEF
d, Khi E di động trên cạnh BC, tia AE cắt CD tại J. Chứng minh biểu thức A E . A J F J có giá trị không phụ thuộc vị trí của E
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi
Cho hình vuông ABCD, E là một điểm trên BC. Qua E kẻ tia Ax vuông góc với AE, Ax cắt CD tại F. Truyen tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI tại G.
a) Chứng minh: AE = AF và tứ giác EGKF là hình thoi
b) Chứng minh: Tam giác AKF đồng dạng với tam giác CAF và AF^2 = FK.FC
c) Khi E thay đổi trên BC. Chứng minh EK = BE + DK và chu vi tam giác EKC không đổi
đề khó nhỉ
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc
với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh
tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, BE=\(\dfrac{3}{4}\)BC.Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng\(\dfrac{1}{AE^2}\)\(\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
cho hình vuông ABCD Gọi E là một điểm của cạnh BC ( E khác B,C) qua A kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F.trung tuyến AI của tam giác AÈ cắt CD ở K
a, chứng minh AE=AF
b, chứng minh AE^2=FK.FC
c, chứng minh I luôn thuộc một đg thẳng cố định khi E di chuyển trên cạnh BC
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
cho hình vuông ABCD,E thuộc BC qua A kẻ tia Ax vuông góc AE cắt CD tại F.trung tuyết Ay của tam giác AEF cắt CD ở K a,chứng minh rằng AF^2 = FK . FC b,chứng minh rằng khi E di chuyển trên cạnh BC thì chu vi tam giác EKC có giá trị không đổi