tìm x thuộc z để M=x^2-5/x^2-2 là số nguyên
Cho biểu thức M = x^2 - 5 / x^2 - 2 ( x thuộc Z) . Tìm x thuộc Z để M có giá trị là số nguyên.
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
CHO BIỂU THỨC M= X2- 5 / X2- 2 (X THUỘC Z) TÌM SỐ NGUYÊN X ĐỂ M LÀ SỐ NGUYÊN
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x2 - 2 | 1 | -1 | 3 | -3 |
x2 | 3 | 1 | 5 | -1 |
x | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Vô nghiệm |
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=\frac{-3}{x^2-2}\)
\(\Rightarrow x^2-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng xét giá trị
\(x^2-2\) | -1 | 1 | -3 | 3 |
\(x\) | \(\pm1\) | \(\pm\sqrt{3}\) | vô lí | \(\pm\sqrt{5}\) |
Vì ĐK : \(x\in Z\Rightarrow x=\pm1\)
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên
tìm x thuộc Z để: x+4/x-2 + 2x-5/x-2 là số nguyên
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a) Tìm x thuộc Z để B là số nguyên.
b) Tìm x thuộc Z để A, B cùng là số nguyên.
a: Để B nguyên thì \(-7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
b: Để A là số nguyên thì \(3x+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-2;-4;14;-8\right\}\)
Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)
Cho biểu thức M(x)=x^2-x-2. Tìm x thuộc Z để M(x) có giá trị là số nguyên tố