Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Alicia
Xem chi tiết
Yeutoanhoc
7 tháng 5 2021 lúc 22:32

$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$

Yeutoanhoc
7 tháng 5 2021 lúc 22:33

`x=-1=>ax^2+bx+c=a-b+c=0`

Như Sagi
Xem chi tiết
Nguyen Tan Dung
12 tháng 2 2017 lúc 8:18

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

Ngô Minh Trí
21 tháng 3 2017 lúc 16:52

ko hiểu

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2017 lúc 6:11

Nguyễn Thị Ngọc Trâm
Xem chi tiết
li syaoran
Xem chi tiết
Yen Nhi
20 tháng 5 2021 lúc 10:09

\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)

\(\rightarrow ad+ab< bc+ab\)

\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)     \(\left(1\right)\)

\(\text{Ta có:}\)

\(ad< bc\)

\(\rightarrow ad+cd< bc+cd\)

\(\rightarrow d.\left(a+c\right)< c.(b+d)\)

\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)     \(\left(2\right)\)

\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Khách vãng lai đã xóa
nguyen vu anh
Xem chi tiết
Phạm Thành Đạt
Xem chi tiết
Lê Nguyên Hạo
18 tháng 8 2016 lúc 15:52

* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

vunguyenminhtrang
Xem chi tiết
KWS
23 tháng 8 2018 lúc 21:48

Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)

thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đạt Phạm
Xem chi tiết
Nguyễn Như Thùy
Xem chi tiết