Chứng tỏ nếu p nguyên tố lớn hơn 3 thì (p-1).(p+1) chia hết cho 12
Chứng tỏ nếu P nguyên tố lớn hơn 3 thì (P-1) (P+1)chia hết cho 12
(p-1)(p+1)=p\(^2\) p nguyên tố>3 suy ra p lẻ suy ra p\(^2\)-1chia het cho 4 p nguyên tố>3 suy ra p khong chia het cho 3 suy ra p\(^2\)-1 chia het cho 3 vì (4,3)=1 suy ra p\(^2\)-1chia het cho 12
Chứng tỏ nếu P nguyên tố lớn hơn 3 thì (P-1)(P+1) chia hết cho 12
P là số nguyên tố lớn hơn 3.
=> P là số lẻ.
=>P-1 và P+1 là số chẵn.
=>(P-1)(P+1) là 2 số chẵn liên tiếp.
=>(P-1)(P+1) chia hết cho 4(1)
Vì P là số nguyên tố lớn hơn 3,
=>P có hai dạng 3k+1,3k+2
Với P=3k+1=>P-1=3k+1-1=3k=>P-1 chia hết cho 3=>(P-1)(P+1) chia hết cho 3
Với P=3k+2=>P+1=3k+2+1=3(k+1)=>P-1 chia hết cho 3=>(P-1)(P+1) chia hết cho 3
=>(P-1)(P+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(P-1)(P+1) chia hết cho 3 và 4.
Mà (3,4)=1
=>(P-1)(P+1) chia hết cho 12.
=>ĐPCM
Chứng tỏ nếu a nguyên tố lớn hơn 3 thì a^2-1 chia hết cho 24
chứng tỏ nếu a nguyên tố lớn hơn 3 thì a2 - 1 chia hết cho 24
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p^2 -1 chia hết cho 3
Ta có: p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
TH1: p=3m+1 (m thuộc N)
=>p2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>p2 chia 3 dư 1
TH2: p=3n+2 (n thuộc N)
=>p2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>p2 chia 3 dư 1
Vậy p2 luôn chia 3 dư 1 (với p là SNT >3)
=>p2-1 chia hết cho 3(đpcm)
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì ( p - 1 ) ( p + 1 ) chia hết cho 24
Ta có : (p-1)(p+1) = p2 - 1
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : p2 không chia hết cho 3
\(\Rightarrow\)p2 chia 3 dư 1 (Vì p2 là số chính phương)
\(\Rightarrow\)p2 -1 \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.
\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp
Do đó: (p-1)(p+1) \(⋮\)8
Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)
chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p mũ 2 - 1 chia hết cho 3
Xét số nguyên tố p khi chia cho 3
Ta có: p = 3k + 1 hoặc p = 3k + 2 ( điều kiện k thuộc N* )
- \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1=9k^2+6k⋮3\)( 1 )
- \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1=9k^2+6k⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(p^2-1⋮3\left(đpcm\right)\)
Chứng tỏ nếu p nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 24
chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3
p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
TH1: p=3k+1
\(\Rightarrow p^2=\left(3k+1\right)^2=\left(3k+1\right)3k+\left(3k+1\right)\)
\(=\left(3k+1\right)3k+3k+1=\left(3k+1+1\right)3k+1\) chia 3 dư 1
TH2: p=3k+2
\(\Rightarrow p^2=\left(3k+2\right)^2=\left(3k+2\right)3k+\left(3k+2\right).2\)
\(=\left(3k+2\right)3k+2.3k+2.2\)
\(=\left(3k+2\right)3k+2.3k+3+1\)
\(=3.\left[k\left(3k+2\right)+2k+1\right]+1\) chia 3 dư 1
Do đó bình phương của 1 số nguyên tố luôn chia 3 dư 1, nên trừ đi 1 sẽ chia hết cho 3
\(\Rightarrow p^2-1\text{⋮}3\)
Vậy nếu p là số nguyên tố lớn hơn 3 thì \(p^2-1\text{⋮}3\)