Cho n thuộc z.CMR n^2(n^2-1) chia hết 12
cho n thuộc Z.cmr (-n-1).(n+2) chia hết cho 12
mình cần gấp nhé cảm ơn ạ!!!!!!!!!!!!!!
Bài 1: Ch a,b thuộc Z t/m:(17a+5b).(5a+17b) chia hết cho 11.CMR:: (17a+5b)(5a+17b) chia hết cho 121
Bài 2: Cho a,b thuộc N . CMR: ab(a^2-b^2)(4a^2-b^2) chia hết cho 5
Bài 3: Cho a,b thuộc Z.CMR: ab(a^2+b^2)(a^2-b^2) chia hết cho 30
Bài 4: Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
CÁC BẠN GIÚP MÌNH NHÉ
Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
\(n^6-n^2=n^2\left(n^4-1\right)=\left(n^2-1\right)n^2\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).n.\left(n^2-4\right)+5.n^2\left(n-1\right).\left(n+1\right)\)
\(=n^2\left(n-1\right).\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right).\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\) là tích 5 số nguyên liên tiếp nên
\(n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\) chia hết cho 3.4.5=60
Xét \(n\) chẵn thì \(n^2⋮4\) nên \(5n^2\left(n-1\right)\left(n+1\right)⋮20\) mà \(n\left(n+1\right)\left(n-1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
\(\Rightarrow n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
Xét \(n\) lẻ thì \(n-1,n+1\) cùng chẵn hay \(5n^2\left(n-1\right)\left(n+1\right)⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
bạn ơi giải thích cho mình chỗ(n^2-1).n^2(n^2+1) taih sao lại bằng(n-1)n(n+1)n(n^2-4)+5n^2.(n-1)(n+1) được ko? Cảm ơn bn nhiều nha
c) Cho M = 7x + 3y ; N = 7y – 3z ; P = 2021z – 2023x với x, y, z thuộc Z.
CMR: M.N.P chia hết cho 2.
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
cho n thuộc N. chứng minh; n^2.(n^2-1) chia hết cho 12
Chứng minh rằng với mọi n thuộc N thì :
a,n^2 + n + 2 không chia hết cho 15
b, ( n -1 ) . ( n +2 ) + 12 không chia hết cho 9
c, 2010^n -1 không chia hết cho 1000^n - 1
chỉ với mọi người ơi:
1/ tìm n thuộc N sao cho n + 2 chia hết cho n - 3
2/ tìm n thuộc N sao cho n + 12 . n + 18 đều chia hết cho n và n < 5
\(n+2⋮n-3\)
\(n-3+5⋮n-3\)
\(5⋮n-3\)hay \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Tìm n thuộc Z :
a, n2-5n+1 chia hết cho n-1
b, 2n2-3 chia hết cho n+1
c, 12-3n chia hết cho n+1
a, \(=>n^2-n-4n+4-3⋮\left(n-1\right)\)
\(=>n\left(n-1\right)-4\left(n-1\right)-3⋮\left(n-1\right)\)
=> (n-1) là ước của 3; Mà Ư(3) = 1;-1;3;-3 nên ta có:
\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=3\\n-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=4\\n=-2\end{matrix}\right.\)
b, \(=>2n^2+2n-2n-3⋮\left(n+1\right)\)
\(=>2n\left(n+1\right)-2\left(n+1\right)-1⋮\left(n+1\right)\)
=>(n+1) là ước của 1; mà Ư(1)= 1;-1 nên ta có:
\(\left[{}\begin{matrix}n+1=1\\n+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-2\end{matrix}\right.\)
c, \(=>-3n+12=-\left(3n+3\right)+15⋮\left(n+1\right)\)
=>(n+1) là ước của 15;
Bạn làm tương tự nhé;
CHÚC BẠN HỌC TỐT.........
Cho m,n thuộc Z. Cmr:
1, n2(n2-1) chia hết cho 12
2, n2(n2-1) chia hết cho 60
3, mn(m4-n4) chia hết cho 30
4, n5-n chia hết cho 30