Chứng minh rằng a thuộc Z thì
N=(a-2).(a+3).(a-3).(a+2) là số chẵn
trả lời giúp đi cần gấp!!!!!!!
Chứng minh rằng nếu a thuộc Z thì
Q=(a-2)(a+3)-(a-3)(a+2) là số chẵn
MÌNH CẦN GẤP CÁC BẠN NHA! mong các bạn giúp đỡ
Q = (a - 2)(a + 3) - (a - 3)(a + 2)
Nếu a là số lẻthì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra lẻ * chẵn - chẫn * lẻ = chẵn - chẵn = chẵn (1)
Nếu a là số chẵnthì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra chẵn * lẻ - lẻ * chẵn = chẵn - chẵn = chẵn (2)
Từ (1) và (2) suy ra đpcm
Chứng minh rằng nếu a thuộc Z thì:
N=(a-2).(a+3)-(a-3).(a+20) là số chẵn
Làm giúp mk bài này nha,mk đang cần gấp.Cảm ơn mn nhiều :3
sửa đề: N=(a-2)(a+3)-(a-3)(a+2)
=(a2+3a-2-6)-(a2+2a-3a-6)
=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z
C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
C2:
vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.
Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.
Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.
Kết luận: N chẳn với mọi a.(DPCM)
Xét 2 trường hợp:
+ Trường hợp 1: a là 1 số chẵn
=> a=2k \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)= (2k-2)(2k+3)-(2k-3)(2k+20)= 2(k-1)(2k+3)-(2k-3).2(k+10)
= 2. [(k-1)(2k+3)-(2k-3)(k+10)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
+ Trường hợp 2: a là 1 số lẻ
=> a=2k+1 \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)=(2k+1-2)(2k+1+3)-(2k+1-3)(2k+1+20)=(2k-1).2(k+2)-2(k-1)(2k+21)
= 2.[(2k-1)(k+2)-(k-1)(2k+21)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
Vậy nếu a\(\inℤ\)thì N=(a-2)(a+3)-(a-3)(a+20) là 1 số chẵn
Bạn tham khảo bài làm của mik nhé!!! k cho mik nha
Chứng minh rằng nếu a thuộc Z thì :N =(a-2)(a+3)-(a-3)(a+2) là số chẵn
Ta có:
\(N=\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\)
\(N=a^2+3a-2a-6-\left(a^2+2a-3a-6\right)\)
\(N=a^2+a-6-a^2+a-6\)
\(N=2a\)
Mà: \(2a\) luôn chẵn với mọi a
\(\Rightarrow N\) chẵn với mọi a
N=(a+3)(a-2)-(a-3)(a+2)
=a^2-2a+3a-6-(a^2+2a-3a-6)
=a^2+a-6-a^2+a+6
=2a là số chẵn
1.
chứng minh rằng phân số a/a+1 là phân số tối giản (a thuộc Z)
2.
chứng minh rằng phân số 246913579/123456790 là phân số tối giản.
3.
chứng minh rằng phân số 4n+8/2n+3 là phân số tối giản.
trả lời nhanh lên đi tôi nay mình phải đi học rồi
Chứng minh rằng nếu a thuộc Z thì
N= ( a-2)(a+3)-(a-3)(a+2) là số chẵn
Đặt VT = (a-2)(a+3)
VP = (a-3)(a+2)
Ta có:
Nếu a chia hết cho 2
< = > a - 2 chẵn
< = > VT chia hết cho 2
< = > a + 2 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<1>>
Nếu a chia 2 dư 1
< = > a + 3 chẵn
< = > VT chia hết cho 2
< = > a - 3 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<2>>
Từ <<1>> ; <<2>> => N chẵn
Chứng minh rằng nếu a thuộc Z thì:
N=(a-2)(a+3)-(a-3)(a+2) số chẵn
Ta có:
N= a^2-2a+3a-6-a^2-2a+3a+6
= 2a
Vì 2a là số chẵn với mọi a thuộc Z
=>N là số chẵn với mọi a thuộc Z.
<=> N= a2 +3a -2a -6 -a2-2a+3a +6= 2a Vì 2a là số chẵn nên N là số chẵn
Chứng minh rằng với mọi a thuộc Z thì các biểu thức sau là số chẳn:
a) A=(a+3)(a-5)+(a+3)(a+1)
b) B=(a-2)(a+3)-(a+2)(3-a)
Giúp mik với mik đang cần gấp ai nhanh mik sẽ tick ✔ cho!!!
vaiiiiiiiiiiiiiiiiiiiiiiiii
1) Chứng minh rằng nếu a thuộc Z thì :
a) M=a(a+2)-a(a-5)-7 là bội của 7
b)N = (a-2)(a+3)-(a-3)(a+2) là số chẵn
2) Tìm số có 4 chữ số . Biết rằng nếu xóa đi chữ hàng chục và hàng đơn vị thì số đó giảm đi 4455 đơn vị
1)
a) M = a(a + 2) - a(a - 5) - 7 = a(a + 2 - a + 5) - 7 = 7a - 7 = 7(a - 1) chia hết cho 7
Chứng minh rằng nếu A thuộc Z thì
a)A=a.(a+2)-a.(a-5)-7 là bội của 7
v)B=(a-2).(a+3)-(a-3).(a+2) là số chẵn
\(A=a^2+2a-a^2+5a-7=7a-7=7\left(a-1\right)⋮7\)
\(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)=a^2+a-6-\left(a^2-a-6\right)=2a+12=2\left(a+6\right)⋮2\)
\(\text{Vậy: B là số chẵn; A chia hết cho 7}\)