Tìm a,b thuộc Z thỏa mãn
a, 5b-3a=2ab-11
b, 1/2a+1/b=1
Câu 1: a)Biết rằng a,b,c thuộc Z. Hỏi số 3a^2.b.c^3; -2a^3b^5c; -3a^5b^2c^2 có thể cung âm không?
Cho hai tích -2a^5b^2 và 3a^2b^6 cùng dấu. Tìm dấu của a?
Cho a và b trái dấu, 3a^2b^1980 và -19a^5b^1890 cùng dấu. Xác định dấu của a và b?
b)Cho x thuộc Z và E=(1-x)^4.(-x). Với điều kiện nào của x thì E =0;E>0;E<0.
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
CMR nếu (a-11b+3c) chia hết cho 17 thì (2a-5b+6c) chia hết cho 17 ( với a,b,c thuộc Z)
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)
cho a,b thuộc z.2a^2+b^2-2ab-5b+11<0.tính a^5+b^4
\(2a^2+b^2-2ab-5b+11< 0\)
\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)
\(\Leftrightarrow4a^2-4ab+b^2+b^2-10b+25< 3\)
\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)
Ta có các trường hợp:
- \(\hept{\begin{cases}2a-b=0\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=5\end{cases}}\)(loại)
- \(\hept{\begin{cases}2a-b=1\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=0\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=6\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=1\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=6\end{cases}}\)(loại)
cho a,b thuộc z.2a^2+b^2-2ab-5b+11<0.tính a^5+b^4
Chứng minh rằng: 2a - 5b + 6c chia hết cho 17 nếu a - 11b + 3c chia hết cho 17 ( a,b,c thuộc Z)
nhân 2a-5b+6c với 9 rồi trừ đi a-11b+3c
Chứng minh rằng : 2a-5b+6c chia hết cho 17 nếu a-11b+3c chia hết cho 17 (a,b,c thuộc Z)
chứng minh rằng : 2a-5b+6c chia hết cho 17 nếu a-11b + 3c chia hết cho 17 (a,b,c thuộc Z)
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
1duocgoitienganhla
Nguyễn Ngọc Ánh Minh trả lời đúng quá
chứng minh rằng : 2a -5b+6c chia hết cho 17 nếu a -11b + 3c chia hết cho 17 (a,b,c thuộc Z)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Tìm a,b thuộc z mà
2ab +3a=1-b