CHO \(ABC\ne0\)VÀ \(\frac{A+B-C}{C}=\frac{B+C-A}{A}=\frac{C+A-B}{B}\)
TÍNH GIÁ TRỊ CỦA \(A=\left|\left(A+B\right)\left(B+C\right)\left(C+A\right)\right|:ABC\)
Cho abc=1 và a,b,c đôi một khác nhau
Tính giá trị P=\(\frac{2018+2019a^3}{a\left(a-b\right)\left(a-c\right)}+\frac{2018+2019b^3}{b\left(b-a\right)\left(b-c\right)}+\frac{2018+2019c^3}{c\left(c-a\right)\left(c-b\right)}\)
CHO \(ABC\ne0\)VÀ \(\frac{A+B-C}{C}=\frac{B+C-A}{A}=\frac{C+A-B}{B}\)
TÍNH GIÁ TRỊ CỦA \(A=\left|\left(A+B\right)\left(B+C\right)\left(C+A\right)\right|:ABC\)
Cho a;b;c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị của biểu thức A = \(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
\(\frac{b+c}{a}+1=\frac{a-c}{b}+1=\frac{a-b}{c}+1\Rightarrow\frac{b+c}{a}=\frac{a-c}{b}=\frac{a-b}{c}\)
\(\Rightarrow a=b+c\), \(b=a-c\),\(c=a-b\)\(\Rightarrow A=-1\)
\(Cho\)\(abc\ne0,và\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right).\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Cho abc \(\ne0\) và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính P = \(\left(1-\frac{b}{a}\right)\left(1+\frac{c}{d}\right)\left(1+\frac{a}{c}\right)\)
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
Cho a,b,c là các số thực khác 0 thỏa mãn: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^2+b^3+c^3}{abc}=2\)
Tính giá trị của biểu thức \(A=\left(\left(a+b\right)^{2013}-c^{2013}\right)\left(\left(b+c\right)^{2013}-a^{2013}\right)\left(\left(c+a\right)^{2013}-b^{2013}\right)\)
Cho \(abc\ne0\)và \(a+b+c=0\)
Rút gọn \(T=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)
Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)
\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)
Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
= 0
=> \(a^3+b^3+c^3=3abc\) thay vào (1) được :
\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)