Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham thi thu Phuong
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
Không biết
9 tháng 7 2016 lúc 20:50

\(\frac{b+c}{a}+1=\frac{a-c}{b}+1=\frac{a-b}{c}+1\Rightarrow\frac{b+c}{a}=\frac{a-c}{b}=\frac{a-b}{c}\)

\(\Rightarrow a=b+c\)\(b=a-c\),\(c=a-b\)\(\Rightarrow A=-1\)

Nguyễn Mai Quỳnh Anh
Xem chi tiết
Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 7:47

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

Nguyen Thi Thanh Thuy
Xem chi tiết
Trang
4 tháng 11 2016 lúc 16:32

d ở đâu vậy bạn

Nguyen Thi Thanh Thuy
4 tháng 11 2016 lúc 20:58

Đề bài là tính

Diệu Anh Hoàng
Xem chi tiết
gấukoala
Xem chi tiết
Đồ Ngốc
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 11 2016 lúc 10:30

\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)

Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)

\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)

Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

= 0

=> \(a^3+b^3+c^3=3abc\) thay vào (1) được : 

\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)