Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Thiện Hồ
Xem chi tiết
Trần Phương Bảo Anh
19 tháng 10 2021 lúc 16:40

hỏi từ lâu hổng ai trả lời hihi

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 2:47

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

Diệu Linh Trần Thị
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

__Anh
Xem chi tiết
Trần Đức Hiếu
Xem chi tiết
Dương Đức Hà
12 tháng 5 2021 lúc 22:09

Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .

-> 4n3 - 6n2 + 3n + 37 chia hết cho 5 

-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5

-> (2n-1)3 +75 chia hết cho 5

-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125  nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)

-> đpcm

Khách vãng lai đã xóa
Trần Long Tăng
Xem chi tiết
An Nhiên
9 tháng 9 2017 lúc 18:56

Ta có: \(10^n+18n-1=\left(10^n-1\right)+18n=99....9+18n\) (số 99...9 có n chữ số 9) 
\(=9\left(11....1+2n\right)\)(số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc  \(A=11...1+2n=11.....1-n+3n\)(số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
\(\Rightarrow\) 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

Le Nhat Phuong
9 tháng 9 2017 lúc 18:59

  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Nhok Thiên Bình
15 tháng 4 2018 lúc 20:42

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2017 lúc 10:25

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

Nguyễn Thị Ngọc Thơ
Xem chi tiết
Đinh Thị Khánh Linh
30 tháng 3 2016 lúc 23:04

Ta có: A=10^n+18n-1

A=10^n-1+18n

A=99...9+18n

   n c/số 9

A=11...1.9+18n

n c/số 1

Ta đã biết mọi số tự nhiên đèu có thể viết dưới dạng tổng các chữ số của số đó và một số chia hết cho 9

=>11...1=n+9q  (q thuộc N)

n c/số 1

Ta có:A=(n+9q).9+18n

A= 9n+81q+18n

A=27n+81q

A=27(n+3q)

Vì 27(n+3q) chia hết cho 27 với mọi n thuộc N   

=>A chia hết cho 27 với mọi n thuộc N

Bài toán được chứng minh

Nguyễn Thị Ngọc Thơ
7 tháng 5 2016 lúc 5:37

mình làm được rồi , không phải cách của bạn đâu

Hỏa Hỏa
Xem chi tiết
Lam Ngo Tung
13 tháng 10 2017 lúc 17:17

Mình xin trả lời bạn như sau :

Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
\(\Rightarrow\)11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 \(\Rightarrow\)11...1 (n chữ số 1) - n chia hết cho 3 \(\Rightarrow\) A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)

Lam Ngo Tung
13 tháng 10 2017 lúc 17:29

Mình cũng có cách này nữa mặc dù dài nhưng vẫn tốt :

Chọn n=1 \(\Rightarrow\) 10+18-1=27 chia hết cho 27 (luôn đúng)
Giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10k+1+18(k+1)-1 chia hết cho 27.
Ta có 10k+1+18(k+1)-1= 10 x 10k+18k+18-1
= (10k +18k-1)+9 x 10k +18
= (10k+18k-1)+9(10k+2)
Ta có: (10^k+18k-1) chia hết cho 27

\(\Rightarrow\) 10k+1+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10k+2) chia hết cho 27.

Chứng minh 9(10k+2) chia hết cho 27.
Chọn k=1 \(\Rightarrow\) 9(10+2)=108 chia hết cho 27(luôn đúng)
Giả sử k=m(với m thuộc N*) ta luôn có 9(10m+2) chia hết cho 27.
Ta cần chứng minh với mọi k= m+1 ta có 9(10m+1+2) chia hết cho 27.
Thật vậy ta có: 9(10m+1+2)= 9( 10 x10m+2)= 9( 10m+9 x 10m+2)
= 9(10m+2) +81 x 10m
Ta có 9(10m+2) chia hết cho 27 và 81x10m chia hết cho 27

\(\Rightarrow\) 9(10m+1+2) chia hết cho 27
\(\Rightarrow\)9(10k+2) chia hết cho 27
\(\Rightarrow\)10k+1+18(k+1)-1 chia hết cho 27
\(\Rightarrow\)10n+18n-1 chia hết cho 27 \(\Rightarrow\) ( đpcm )