Tìm n thuộc N sao cho các chữ số sau là số chính phương :
n2 +1234
Tìm n thuộc N sao cho các chữ số sau là số chính phương :
n2 +1234
x
Tìm n thuộc N sao cho n2+2n+30 là số chính phương
Tìm tất cả các số tự nhiên n sao cho n2 + 1234 là một số chính phương
Đặt n^2+1234=a^2 ( a thuộc N)
ta có:
\(n^2+1234=a^2\)
\(\Leftrightarrow a^2-n^2=1234\)
\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=1234\)
Vì a thuộc N và n thuộc N nên ta có bảng:
a+n | 1 | 1234 | 2 | 617 |
a-n | 1234 | 1 | 617 | 2 |
a | 617,5 | 617,5 | 309,5 | 309,5 |
n | -616,5 | 616,5 | -207,5 | 307,5 |
(Không thỏa mãn) | (Không thỏa mãn) | (Không thỏa mãn) | (Không thỏa mãn) |
Vậy không có số tự nhiên n nào thỏa mãn đề bài
Tìm tất cả số TN n sao cho n^2 + 1234 là 1 số chính phương
\(n^2+1234=k^2\)
\(\Leftrightarrow k^2-n^2=1234\)
\(\Leftrightarrow\left(k-n\right)\left(k+n\right)=1234=2.617\)
Ta có bảng giá trị:
k-n | 1 | 2 |
k+n | 1234 | 617 |
k | 1235/2 (loại) | 619/2 (loại) |
n |
Vậy không tồn tại số tự nhiên \(n\)thỏa mãn ycbt.
Tìm các số tự nhiên n sao cho n2 16n 2011 là 1 số chính phương
Tìm snt n sao cho các số sau là số chính phương: a, n(n+3) b, 2^n+ 21 c, 2^8+ 2^11 d, n^2+ 1234 (CÁC BẠN CHO MÌNH CÁCH GIẢI VÀ KẾT QUẢ NHÉ)
Tìm số tự nhiên n sao cho các số sau là số chính phương:
a) n2 + 1234
b) 2n + 15
c) 24 + 27 + 2n
Câu b:Ta có : 2^n +15=2^n + 2.1.3 +3^2
=(2^n +3)^2=(1+3)^2
Suy ra :n=1.Vậy n=1
Câu 1 :a. Tìm n để n2+ 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3 . Hỏi n2 là 2006 là số nguyên tố hay hợp số .
Câu 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n-2 ).2
Bạn nào trả lời giúp mình đi
Tham khảo câu hỏi tương tự nhé bạn .
Tick tớ đc chứ
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0