Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Miêu
Xem chi tiết
sakura haruko
Xem chi tiết
sakura haruko
Xem chi tiết
Nhất Chu Phạm
Xem chi tiết
Akai Haruma
18 tháng 9 2023 lúc 0:34

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

Akai Haruma
18 tháng 9 2023 lúc 0:35

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

Akai Haruma
18 tháng 9 2023 lúc 0:36

Bài 3:

$x-4\sqrt{x}+10$

ĐKXĐ: $x\geq 0$

Ta có: $x-4\sqrt{x}+10=(x-4\sqrt{x}+4)+6=(\sqrt{x}-2)^2+6\geq 0+6=6$

Vậy gtnn của biểu thức là $6$. Giá trị này đạt được khi $\sqrt{x}-2=0\Leftrightarrow x=4$

 

Nguyên Phan
Xem chi tiết
Trần Ái Linh
22 tháng 7 2021 lúc 8:54

ĐK: `x-4>=0 <=>x>=4`

`\sqrt(x-4)>=0 forall x`

`<=>\sqrt(x-4)-2>=-2`

`=> (\sqrt(x-4)-2)_(min) =-2<=> x=4`

Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Song Hương
6 tháng 3 2017 lúc 8:39

\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(P=\left(x^2+5x\right)^2-36\)

\(P=\left[x\left(x+5\right)\right]^2-36\)

Vậy GTNN của P = -36 khi x = 0 hoặc -5.

Lê Trần Ngọc Hân
Xem chi tiết
vuong hien duc
Xem chi tiết
vũ tiền châu
12 tháng 6 2018 lúc 8:16

Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)

Dấu = xảy ra <=> x=3

c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)

Dấu = xảy ra <=> \(2\le x\le3\)

^_^

Trần Minh Hoàng
12 tháng 6 2018 lúc 9:02

b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)

\(\Rightarrow B\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Nhỏ's Dê's
Xem chi tiết