tìm giá trị lớn nhất của biểu thức
C=\(\frac{x+2}{\left|x\right|}\)với x nguyên
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Tìm giá trị lớn nhất của biểu thức C=\(\frac{x+2}{\left|x\right|}\) với x là số nguyên
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
tìm giá trị lớn nhất của biểu thức C= \(\frac{x+2}{\left|x\right|}\)vs x là số nguyên
Đặt \({x+2}\over|x|\)=A
ĐKXĐ: x khác 0
x nguyên; x khác 0 -> Xét 2 trường hợp:
_Th1: x>0 (hay x>=1)-> |x|=x thay vào đc:
A=\({x+2}\over x\)=\(1+{2\over x}\) <= 3 (do x>=1 -> \(2\over x\)<=2). (1)
Dấu '=' xảy ra khi x=1
_Th2: x<0 (hay x<=-1) -> |x|=-x thay vào đc:
A=\({x+2}\over -x\)\(={-1-{2\over x}}\) <= -3 (do x<= -1 ->\(2\over x \)>= -2.(2)
Dấu '=' xảy ra khi x=-1
Từ (1),(2) -> GTLN A=3 khi x=1
Cho biểu thức \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Chứng tỏ rằng với mọi x, biểu thức C luôn có giá trị là 1 số dương.
v, Tìm tất cả các số nguyên x để C có giá trị là 1 số nguyên
c, Với giá trị nào của x thì biểu thức C có giá trị nhỏ nhất. Tìm giá trị nhỏ đó
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
Cho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
Tìm giá trị lớn nhất của biểu thức :
A = \(\frac{1}{2\left(x-1\right)^2+3}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất :
A = \(\frac{1}{7-x}\)
B = \(\frac{27-2x}{12-x}\)
Tìm giá trị nhỏ nhất :
B = \(\left(x^4+5\right)^2\)
A lớn nhất khi 2(x-1)^2 + 3 nhỏ nhất Vậy A lớn nhất là 1/3 khi x = 1
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
b. Tìm giá trị lớn nhất của biểu thức B =\(\dfrac{x-1}{\left|x-2\right|}\)với x là số nguyên.
Biểu thức không có max. Bạn coi lại đề.
À ha sorry bạn. Mình quên mất điều kiện $x$ nguyên.
Xét 2 TH sau:
TH1: $x>2$:
$B=\frac{x-1}{x-2}=1+\frac{1}{x-2}$
Để $B$ max thì $\frac{1}{x-2}$ max $\Leftrightarrow x-2$ min
Vậy $x-2$ phải là số nguyên dương bé nhất, tức là $x-2=1$
$\Leftrightarrow x=3$
Khi đó: \(B_{\max}=\frac{3-1}{|3-2|}=2(*)\)
TH2: $x< 2$
$B=\frac{x-1}{2-x}=-(1+\frac{1}{x-2})$
Để B max thì $1+\frac{1}{x-2}$ min
$\Leftrightarrow x-2$ max. Mà $x<2$ nên $x-2$ phải là số nguyên âm lớn nhất
$\Leftrightarrow x-2=-1$
$\Leftrightarrow x=1$
Khi đó: $B=0(**)$
Từ $(*); (**)\Rightarrow B_{\max}=2$ khi $x=3$