Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Trịnh Gia Phát
Xem chi tiết
Nguyễn Linh Chi
25 tháng 11 2019 lúc 14:06

a) Xét \(\Delta\)ABC cân tại A có: ^A = 100\(^o\)

=> ^B = ^C = ( 180\(^o\)- ^A) : 2 = ( 180\(^o\)- 100\(^o\)) : 2 = 40\(^o\)

b) Gọi O là giao điểm của AE và BC 

Có: ^BAC = 100\(^o\); ^BAO = ^DAE = 60\(^o\)

=> ^OAC = ^BAC - BAO = 100\(^o\)- 60 \(^o\)= 40 \(^o\)

=> \(\Delta\)AOC cân tại O ( 1)

Ta lại có: AE = AD ( \(\Delta\)ADE đều ); DA = BC ( giả thiết )

=> AE = BC 

Và AO = OC  ( theo (1))

=> AE - AO = BC - OC

=> OB = OE (2)

Xét \(\Delta\)AOB và \(\Delta\)COE có:

OA = OC ( theo (1)  )

OB = OE ( theo (2) )

^AOB = ^COE ( đối đỉnh )

=>  \(\Delta\)AOB =  \(\Delta\)COE ( c.g.c)

=> AB = CE 

Lại có: AB = AC (  \(\Delta\)ABC cân tại A )

=> AC = CE ( 3)

Xét  \(\Delta\)ADC và \(\Delta\)EDC có:

AB = DE (  \(\Delta\)ADE đều )

CA = CE ( theo 3)

DC chung 

=>  \(\Delta\)ADC và \(\Delta\)EDC ( c.c.c)

=> ^ADC = ^EDC 

Mà ^ADC + ^EDC = ^ADE = 60\(^o\)

=> ^ADC = 30\(^o\)

=> ^ADO = 30 \(^o\)

Xét \(\Delta\) ADO có: ^ADO + ^DAO = 30\(^o\)+ 60\(^o\)=90\(^o\)

=> ^AOD = 90\(^o\)

=> DC vuông AE

Khách vãng lai đã xóa
Thanh Lương
Xem chi tiết
Tu Anh Le Thi
Xem chi tiết
Nguyễn Lê Quỳnh Phương
Xem chi tiết
Thao Nhi
23 tháng 4 2017 lúc 22:47

A B C D H E M

a) Xét tam giác ABC ta có

BC2=52=25

AB2+AC2=25

->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)

b) xét tam giác BAD và tam giác EDA ta có

BD=AE (gt)

AD=AD ( cạnh chung)

góc BDA = góc EAD ( 2 góc sole trong và AE//BD)

-> tam giac BAD= tam giac EDA (c-g-c)

=> AB=DE ( 2 cạnh tương ứng)

c)ta có

góc CAD+ góc BAD =90 (2 góc kề phụ)

góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)

góc BAD=góc DAH ( AD là tia p./g góc BAH)

->góc CAD=góc CDA 

-> tam giác ADC cân tại C

d) Xét tam giác ADC cân tại C ta có

CM là đường trung tuyến ( M là trung điểm AD)

-> CM là đường cao

ta có

góc BAD= góc ADE (  tam giác BAD= tam giác EDA)

mà 2 góc nằm ở vị trí sole trong nên AB//DE

mặt khác AB vuông góc AC (  tam giác ABC vuông tại A)

do đó DE vuông góc AC

Gọi F là giao điểm DE và AC

Xét tam giác CAD ta có

DF là đường cao (DE vuông góc AC tại F)

AH là đường cao (AH vuông góc BC)

AH cắt DE tại I (gt)

-> I là trực tâm 

mà CM cũng là đường cao tam giác ACD (cmt)

nên CM đi qua I

-> C,M ,I thẳng hàng

Kiều Quỳnh Ngân
Xem chi tiết
Oceane Rax HLLN
Xem chi tiết
Uzumaki Nagato
Xem chi tiết
Kim San
Xem chi tiết
Đoàn Minh Hằng
Xem chi tiết