Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bé
Xem chi tiết
Nguyễn Thị Thùy Trang
31 tháng 12 2016 lúc 15:09

1

Nguyễn Thạch Vy
Xem chi tiết
Hoàng Việt
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 11 2021 lúc 20:03

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)

Vậy ta đc đpcm

Dung Thái
Xem chi tiết
Cô Hoàng Huyền
22 tháng 12 2017 lúc 10:44

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

Dung Thái
23 tháng 12 2017 lúc 20:51

Còn bài số 2 thì sao cô??

Cô Hoàng Huyền
26 tháng 12 2017 lúc 10:06

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)

Do x + y + z = 0 nên \(\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2=-2xy-2yz-2zx\)

Vậy thì \(A=\frac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(A=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+zx\right)}\)

\(A=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}=\frac{1}{3}\)

gorosuke
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 12 2019 lúc 19:17

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Xét \(x=-y\)

Ta có:

\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)

\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)

Một cái chặt hơn nè:))

CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

Khách vãng lai đã xóa
thuong bac
Xem chi tiết
Ngu Người
Xem chi tiết
Đặng Minh Đức
9 tháng 12 2018 lúc 19:21

ddeeelll cần làm

Nguyễn Thị Trang Nhunh
Xem chi tiết
Trịnh Ngọc Thành
Xem chi tiết