Cho mình hỏi bài này
X,y,thuộc z biết :(x+2017)^2017+(y-2017)^2017
x+y+z=0 và x3+y3+z3=3xyz . Tính x2017+y2017+z2017
giúp mình giải bài toán này nhé, tks ...
Tính A=( x/2017-z) +( y/2017-x) + (z/2017-y)
biết x+y+z=2017, x,y,z là nguyên dương
cho (x+y+z) (xy+yz+zx)=xyz .CMR:
x^2017+y^2017+z^2017= (x+y+z)^2017
\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)
Vậy ta đc đpcm
Bài 1: Cho \(a^3+b^3+c^3=3abc\) trong đó a,b,c dương
Tính\(A=\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}\)
Bài 2: Cho x+y+z=0
Tính \(A=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
Do x + y + z = 0 nên \(\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2=-2xy-2yz-2zx\)
Vậy thì \(A=\frac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(A=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+zx\right)}\)
\(A=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}=\frac{1}{3}\)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.
CMR nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
cho x + y + z = 2017
x , y , z khác 0
1 / x + 1 /y + 1/z = 1 / 2017
tính S = ( x^5 - 2017^5 ) * ( y^7 - 2017^7 ) * ( z^9 - 2017^9 )
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) CMR \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\)