Cho tam giác ABC vuông tại A D là điểm thuộc cạnh BC đường thẳng D song song AC cắt AB tại E đường thẳng qua D song song AB cătvÁC tại F
a)chứng minh AD=Eb) xác định vị trí D để SAEDF=1/2SABC
S là diện tích
cho tam giác ABC vuông tại A, D là điểm thuộc cạnh BC đường thẳng qua D song song AB cắt AC tại E.đường thẳng qua D song song với AB cắt AC tại F
a)chứng minh AD=EF
b)xác định vị trí D để diện tích AEDF=1/2 diện tích ABC
vẽ hình giúp mình nhé bạn mình tick cho
cho tam giác ABC vuông tại A, D là điểm trên cạnh BC đường thẳng qua D song song AC cắt AB tại E.Đường thẳng qua D song song AB cắt AC tại F
a)AEDF là hình gì
b)xác định vị trí D để AEDF là hình vuông
ai làm được mình sẽ tick cho
Cho tam giác ABC vuông tại A, gọi D là một điểm nằm giữa B và C. Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua D kẻ đường thẳng song song với AC, cắt AB tại F.
a) Chứng minh tứ giác AEDF là hình chữ nhật.
b) Tìm vị trí của điểm D trên cạnh BC để tứ giác AEDF là hình vuông
c) Tìm vị trí của điểm D trên cạnh BC để độ dài đoạn thẳng EF là ngắn nhất.
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
Cho tam giác ABC, một đường thẳng song song cới BC cắt cạnh AB,AC lần lượt tại D, E. Dường thẳng d qua A cắt các đoạn thẳng DE, BC lần lượt tại I, K.
a) Chứng minh DI/BK=IE/KC=DE/BC.
b)Xác định vị trí của đường thẳng d để DI/IE=AD/AB
Bài 1:
Cho tam giác ABC vuông tại A, AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 2
Tam giác ABC vuông tại A có AB = AC. Lấy D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE. Đường thẳng qua D và vuông góc với BE cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 3
Cho tam giác ABC có I là trung điểm AB. Đường thẳng qua I và song song với BC cắt AC ở K. Đường thẳng qua K và song song với AB cắt BC ở H. Chứng minh:
a) KH = IB
b) AK = KC
c) IH // AC
d) H là trung điểm của BC
Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽđường thẳng song song với AM, cắt AB, AC tại E và F
a)Chứng minh DE + DF không đổi khi D di động trên BC
b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. Chứng minh rằng K là trung điểm của FE
Lời giải:
a) Áp dụng định lý Talet cho:
Tam giác $CFD$ có $AM\parallel FD$:
$\frac{DF}{AM}=\frac{CD}{CM}(1)$
Tam giác $ABM$ có $ED\parallel AM$:
$\frac{ED}{AM}=\frac{BD}{BM}(2)$
Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$
$\Rightarrow DE+DF=2AM$
Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động
b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$
Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:
$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$
Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$
$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$
Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$
$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC. M là điểm trên cạnh BC. Đường thẳng qua M song song
với AC cắt AB tại D, đường thẳng qua M song song với AB cắt AC tại E.
Chứng minh rằng: ad/ab+ae/ac=1
zì \(\hept{\begin{cases}MD//AE\\ME//AD\end{cases}}\)
=> tứ giác ADME là hbh
=>\(\hept{\begin{cases}AD=ME\\AE=MD\end{cases}}\)
=>\(\frac{AD}{AB}=\frac{ME}{AB}\)
mà ME//AB
=>\(\frac{ME}{AB}=\frac{CE}{AC}=>\frac{AD}{AB}=\frac{CE}{AC}\)
=>\(\frac{AD}{AB}+\frac{AE}{AC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{CE+AE}{AC}=\frac{AC}{AC}=1\left(dpcm\right)\)