Bài 7: Trường hợp đồng dạng thứ ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Hải Vy

Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽđường thẳng song song với AM, cắt AB, AC tại E và F

a)Chứng minh DE + DF không đổi khi D di động trên BC

b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. Chứng minh rằng K là trung điểm của FE

Akai Haruma
15 tháng 4 2021 lúc 23:37

Lời giải:

a) Áp dụng định lý Talet cho:

Tam giác $CFD$ có $AM\parallel FD$:

$\frac{DF}{AM}=\frac{CD}{CM}(1)$

Tam giác $ABM$ có $ED\parallel AM$:

$\frac{ED}{AM}=\frac{BD}{BM}(2)$

Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$

$\Rightarrow DE+DF=2AM$ 

Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động

b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$

Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:

$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$

Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$

$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$

Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$

$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$

 

 

Akai Haruma
15 tháng 4 2021 lúc 23:43

Hình vẽ:
undefined


Các câu hỏi tương tự
Ngọcc Ngọcc
Xem chi tiết
Linh Yoo
Xem chi tiết
Tra My Nguyen
Xem chi tiết
Lê Khánh Đăng
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Trần Huy Vlogs
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tô Gia Bảo
Xem chi tiết
Trần Văn Tú
Xem chi tiết