Cho S= 1+x+x^2+x^3+x^4+x^5 chứng minh: x*S-S= x^6-1
Cho S = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + ... + n x (n + 1) x (n + 2) .
Chứng minh 4 x S + 1 là một số chính phương .
NHỚ GIẢI BÀI BẢN RA HỘ MÌNH NHA
chứng minh bất đẳng thức :
chứng tỏ rằng:
1) x2-2x+3>0 Vx 2)x2-x+1>0Vx
3)x2+4x+7>0 Vx 4)-x2+4x-5<0 Vx
5)-x2-x-1<0 Vx 6)-4x2-4x-2<0 Vx
ai rảnh giúp mình với ạ pls @@
x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
cho S =1+x+x^2+x^3+x^4+x^5 C/m x*S-S=x^6-1
cho:S=1+x+x2+x3+x4+x5
chứng minh;xS-S=x6-1
Ta có: \(x.S - S = x\left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right) - \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right)\)
\(\begin{array}{l} = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6} - 1 - x - {x^2} - {x^3} - {x^4} - {x^5}\\ = {x^6} - 1 \text{(đpcm)} \end{array}\)
Ta có: \(S=1+x+x^2+x^3+x^4+x^5\)
\(x\cdot S=x\left(1+x+x^2+x^3+x^4+x^5\right)=x+x^2+x^3+x^4+x^5+x^6\)
Do đó: \(x\cdot S-S=\left(x+x^2+x^3+x^4+x^5+x^6\right)-\left(1+x+x^2+x^3+x^4+x^5\right)\)
\(=x+x^2+x^3+x^4+x^5+x^6-1-x-x^2-x^3-x^4-x^5\)
\(=x^6-1\)(đpcm)
\(S=1+x+x^2+x^3+x^4+x^5\\ \Rightarrow xS=x\left(1+x+x^2+x^3+x^4+x^5\right)\\ xS=x+x^2+x^3+x^4+x^5+x^6\\ \Rightarrow xS-S=\left(x+x^2+x^3+x^4+x^5+x^6\right)-\left(1+x+x^2+x^3+x^4+x^5\right)\\ xS-S=x^6-1\)
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
a) Cho BCNN(x,y)=720, x+y=9 Tìm x/y
b)Tính 1-3+5-7+9-11+.....+2013-2015+2017
c)Cho S=6+25+125+5^4+...+5^2015
+)Chứng minh 4S+1 chia hết cho 5^2016
+)Chứng minh S chia hết cho 6
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
chung minh bieu thuc sau khong phu thuoc va x va y
a ) M = 3x( x - 5y ) + ( y - 5x )( -3y ) - 3(x^2 - y^2 ) - 1
b ) cho S = 1 + x + x^2 + x^3 + x^4 + x^5 cm : xS - S = x^6 - 1
a) Ta có:
M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1
M = -1
=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y
b) Ta có: S = 1 + x + x2 + x3 + x4 + x5
x.S = x(1 + x + x2 + x3 + x4 + x5)
x.S = x + x2 + x3 + x4 + x5 + x6
xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)
xS - S = x6 - 1 => đpcm
a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x2 + (-3).x2 + (-3).(-y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1
M = 0 + 0 - 1
M = -1
Vậy: biểu thức không phụ thuộc vào x và y
Bài 1:Tìm các số tự nhiên x,y thỏa mãn:
a,x^2 -3xy=6
b,(2x+1).(y-5)=12
Bài 2:Cho S=3^0+3^2+3^4+...+3^2002. Hãy chứng minh S chia hết cho 7
Bài 3:Chứng minh 10^1995+8/9 là 1 số tự nhiên
Giúp mình với đang cần gấp bạn nào trả lời đúng mình sẽ tích cho
Đề bài như sau:
Bài 1: tìm x
a. x(x+3)=0
b.(x-1)(x^2-1)=0
Bài 2: tìm x biết
a. -12(x-5)+7(3-x)=5
b. 30(x+2)-6(x-5)-24x=100
Bài 3: Cho S= 1-3+3^2-3^3+.....+3^98-3^99
a. Chứng minh rằng S là bội của -20
b. Tính S, từ đó suy ra 3^100 chia cho 4d1
Bài 1: Tìm x
a) x . (x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=0-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
b) (x -1) (x2 - 1) = 0
=> \(\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0+1\\x^2=0+1\left(bỏ\right)\end{cases}}\)
=> x = 1
Bài 2: Tìm x, biết
a) -12(x - 5) + 7(3 - x) = 5
-12x - (-12 . 5) + 7 . 3 - 7x = 5
-12x + 60 + 21 - 7x = 5
-12x - 7x = 5 - 21 - 60
-19x = -76
x = -76 : (-19)
x = 4