cho a/b=c/d. cmr a/a-b=c/c-d
lưu ý giải bằng 6 cách
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
cmr \(\frac{a}{a-b}=\frac{c}{c-d}\)
(lưu ý chứng minh bài toán bằng 6 cách)
Cách 1:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 2:\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Rightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 3: Đặt\(\frac{a}{b}=\frac{c}{d}=m\Rightarrow a=mb;c=md\)
Ta có: \(\frac{a}{a-b}=\frac{mb}{mb-b}=\frac{mb}{b\left(m-1\right)}=\frac{m}{m-1}\)
\(\frac{c}{c-d}=\frac{md}{md-d}=\frac{md}{d\left(m-1\right)}=\frac{m}{m-1}\). Do đó \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 4:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 5: \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\).Do đó \(\frac{a}{a-b}=\frac{ad}{d\left(a-b\right)}=\frac{ad}{ad-bd}=\frac{ad}{bc-bd}=\frac{bc}{b\left(c-d\right)}=\frac{c}{c-d}\)
cho a/b=c/d khác 1; abcd khác 0
CMR : a/a-b=a/c-d
giải bằng 7 cách
Giải giúp mình nhanh nhất có thể nhé!
Cho a/b=c/d a/b,c/d khác cộng trừ 1( a,b,c,d khác 0) CMR ab/cd a^2+b^2/c^2+d^2 (Giải bàng nhiều cách)
Đặt a/b=c/d=k
=>a=bk;c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
BÀI 1
\(\frac{x}{2}=\frac{y}{5}\)và x.y = 40
giải bằng 3 cách
BÀI 2
Cho \(\frac{a}{b}=\frac{c}{d}Cmr\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
giải bằng ba cách
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
CMR:\(\frac{a^{2005}}{b^{2005}}=\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}\)
Giúp với ạ(mn đừng giải bằng cách đặt k nha)
Cho a=b+c và c=b.d / b-d (b,d khác 0). CMR: a/b = c/d .Càng nhiều cách giải càng tốt
cho 6 số tự nhiên a,b,c,d,e (a >hoặc bằng b>hoặc bằng c>hoặc bằng d>hoặc bằng e)
CMR: M=(a-b)x(a-c)x(a-d)x(a-e)x(b-c)x(b-d)x(b-e)x(c-d)x(c-e)x(d-e) chia hết cho 288
Cho a;b;c là các số thực dương thỏa mãn a+b+c=a*b*c .Cmr a+b+c >hoặc bằng (1/a+1/b+1/c) . Giúp mình giải bài này với nhanh lên đâỳ có đầy đủ cách làm
Cho a/b=c/d CMR
a, a^2+c^2/b^2+d^2=a^2-c^2/b^2-d^2 (làm theo cách tỉ số bằng nhau)
Ta có :\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
bn Xyz đúng đấy!
Bạn tham khảo cách này nhé (:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(kb\right)^2+\left(kd\right)^2}{b^2+d^2}=\frac{k^2b^2+k^2d^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) => đpcm