Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Anh Trần
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Hằng Phạm
5 tháng 1 2016 lúc 19:19

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

Takaharu Igasaki
Xem chi tiết
Nguyễn Thị Thanh Ngọc
5 tháng 12 2015 lúc 20:34

b)Gọi UCLN(2n+3;4n+8) là d

Ta có:2n+3 chia hết cho d

         4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

    1(4n+8)chia hết cho d

=>4n+6 chia hết cho d

    4n+8 chia hết cho d

4n+8 -(4n+6) chia hết cho d

   2 chia hết cho d

=>d thuộc {1;2} mà 2n+3 không chia hết cho 2

=>d=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.

Tick câu thứ 2 nha!Nếu không hiểu bạn nhắn tin hỏi mình nhé!

    

Kim Taeyeon
5 tháng 12 2015 lúc 20:24

câu hỏi tương tự nha. Tick đi

Trần Mai Trang
Xem chi tiết
Nguyễn Anh Quân
12 tháng 11 2017 lúc 9:08

Gọi ƯCLN của 7n+10 và 5n+7 là d ( d thuộc N sao )

=> 7n+10 và 5n+7 đều chia hết cho d

=> 5.(7n+10) và 7.(5n+7) đều chia hết cho d hay 35n+50 và 35n+49 đều chia hết cho d

=> 35n+50-(35n+49) chia hết cho d hay 1 chia hết cho d => d = 1 ( vì d thuộc N sao )

=> ƯCLN của 7n+10 và 5n+7 là 1

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

=> ĐPCM

Sakuraba Laura
12 tháng 11 2017 lúc 9:11

Gọi d là ƯCLN(7n + 10, 5n + 7), d\(\in\)N*

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(7n+10,5n+7\right)=1\)

\(\Rightarrow\)7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.

hoàng đức mạnh
Xem chi tiết
Hiền Thương
21 tháng 1 2021 lúc 12:16

Gọi ƯCLN(4n+3;5n+4) là d 

 \(\Rightarrow\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}}\) 

\(\Rightarrow20n+16-\left(20n+15\right)⋮d\) 

=> 1 \(⋮\)d

=> d=1 hay ƯCLN(4n+3;5n+4)=1

=> 4n+3 và 5n+4 là 2 số nguyên tố cùng nhay 

Khách vãng lai đã xóa
hoàng đức mạnh
21 tháng 1 2021 lúc 12:25

thanks so much

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 1 2021 lúc 21:17

Đặt \(4n+3;5n+4=d\left(d\inℕ^∗\right)\)

\(4n+3⋮d\Rightarrow20n+15⋮d\)

\(5n+4⋮d\Rightarrow20n+16⋮d\)

Suy ra : \(20n+16-20n-15⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm

Khách vãng lai đã xóa
Minh Nguyễn Cao
Xem chi tiết
Cô Hoàng Huyền
9 tháng 11 2016 lúc 15:07

Gọi d là ƯCLN của 7n + 10 và 5n + 7.

Khi đó ta có 7n + 10 chia hết d và 5n + 5 chia hết d. Vậy thì 5( 7n +10) - 7( 5n+7) = 1 chia hết d. Vậy d = 1 hay 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.

nguyen thi chung
24 tháng 11 2017 lúc 12:26

giả sử (7n+10, 5n+7)=d

suy ra 7n+10chia hết d, 5n+7 chia hết d

suy ra 35n+50 chia hết d; 35n+7 chia hết d

suy ra 35n+50 - 35n-7 chia hết d

suy ra 1 chia hết d 

suy ra d=1

vậy UWCCLN (7n+10; 5n+7)=1

suy ra 7n+10;5n+7 là SNT cùng nhau

Sky Hoàng Nguyễn Fuck
16 tháng 12 2017 lúc 19:44

giả sử (7n+10, 5n+7)=d
suy ra 7n+10chia hết d, 5n+7 chia hết d
suy ra 35n+50 chia hết d; 35n+7 chia hết d
suy ra 35n+50 - 35n-7 chia hết d
suy ra 1 chia hết d
suy ra d=1
vậy UWCCLN (7n+10; 5n+7)=1
suy ra 7n+10;5n+7 là SNT cùng nha

chúc bn hok tốt @_@Hoàng Thị Thu Huyền

Công Chúa Băng Giá
Xem chi tiết
not good at math
26 tháng 2 2016 lúc 19:56

gọi d\(\in\)ƯC(5n+7;7n+10) thì \(\text{5(7n+10)−7(5n+7)}\) chia hết cho dd 

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow\)d = 1

do đó 7n+10 và 5n+7 nguyên tố cùng nhau

Lê Minh Đức
26 tháng 2 2016 lúc 20:13

gọi d∈∈ƯC(5n+7;7n+10) thì 5(7n+10)−7(5n+7)5(7n+10)−7(5n+7) chia hết cho dd 

⇒⇒1 chia hết cho d

⇒⇒d = 1

do đó 7n+10 và 5n+7 nguyên tố cùng nhau

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 11:55

phan trung quân
28 tháng 12 2023 lúc 19:39

Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
                                 hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
                                 hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d 
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

 

Công Nương Bé Xinh
Xem chi tiết
pokemon pikachu
13 tháng 11 2017 lúc 12:27

https://www.youtube.com/watch?v=cFZDEMTQQCs

Công Nương Bé Xinh
13 tháng 11 2017 lúc 12:36

Mày bị rồ ak??