Cho A=3/4+8/9+15/16+...+9999/10000.Chứng tỏ rằng A không là số tự nhiên
nhận xét: với n là số tự nhiên, ta có (n-1)(n+1)=n(n+1)-(n+1)=n2+n-n-1=n2-1
do đó: 1.3=22-1
2.4=32-1
........
99.101=1002-1
=> \(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(=\left(\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Ta có:
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}
Chứng minh \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)không phải là số tự nhiên
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)
gọi B là biểu thức trong ngoặc
Lại có :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)
\(\Rightarrow A>98\)\(\left(2\right)\)
từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)
vậy A không phải là số tự nhiên
phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà
Cho A= 3/4+8/9+15/16+...+9999/10000
Chứng minh 98<A<99.Từ đó=>A không có giá trị là một số tự nhiên
CÁM ƠN MỌI NGƯỜI NHIỀU NHA
CMR: Tổng 3/4 + 8/9 + 15/16 +...+ 9999/10000 không phải là số tự nhiên
Ta có : 3/4 + 8/9 + 15/16 +...+ 9999/10000 = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ...+ (1 - 1/10000) = 99 - (1/4 + 1/9 + 1/16 +...+ 1/10000) (1)
Đặt A = 1/4 + 1/9 + 1/16 +...+ 1/10000
A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100
Mà : A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100 < 1/1.2 + 1/2.3 + 1/3.4 + ....+1/99.100 hay A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+ 1/99 - 1/100
Vậy A < 1 - 1/100 < 1 (2) Từ (1) và (2) => 98 < 3/4 + 8/9 + 15/16 +...+ 9999/10000 < 99 Vậy tổng trên ko phải STN
CMR: Tổng 3/4 + 8/9 + 15/16 +...+ 9999/10000 không phải là số tự nhiên?
Ta có : 3/4 + 8/9 + 15/16 +...+ 9999/10000
= (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ...+ (1 - 1/10000)
= 99 - (1/4 + 1/9 + 1/16 +...+ 1/10000) (1)
Đặt A = 1/4 + 1/9 + 1/16 +...+ 1/10000
A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100
Mà : A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100 < 1/1.2 + 1/2.3 + 1/3.4 + ....+1/99.100
hay A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+ 1/99 - 1/100
Vậy A < 1 - 1/100 < 1 (2)
Từ (1) và (2) => 98 < 3/4 + 8/9 + 15/16 +...+ 9999/10000 < 99
Vậy tổng trên ko phải STN
chứng tỏ rằng S = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\) không là số tự nhiên với mọi
n\(\in\) N, n>2
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)
Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)
S= 3/4+8/9+15/16+24/25+....+2499/2500. chứng tỏ rằng S không phải là số tự nhiên
Cho S:3/4+8/9+15/16+24/25+...2499/2500
Chứng tỏ rằng S ko phải là số tự nhiên.
CHỨNG MINH RẰNG: A = 3/4+8/9+15/16+...+2499/2500 KHÔNG PHẢI SỐ TỰ NHIÊN
\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)