Tìm n thuộc N sao cho n + 2 : n - 3
Tìm n thuộc N sao cho 3 . n - 1 chia hết cho 3 - 2 . n
1, Tìm n thuộc N sao cho: 1!+2!+3!+...+n! là số chính phương
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Tìm n thuộc z sao cho 7n+3 chia hết cho n+2
bài 1: tìm số tự nhiên n biết rằng:
a.1+2+3+...+n=378
b. chứng minh:A=4+2^2+2^3+...+2^2015 là 1 số chính phương
c. tìm A thuộc N biết ƯCLN (a,b)=10 ; BCNN (a,b)=120
d. Tìm n thuộc Z sao cho n-7 chia hết cho 2n+3
Bạn ơi, cái câu b đấy
Minh tính đc A=22016-1.
22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha
Tìm x thuộc N sao cho :
a. n + 3 chia hết cho n - 2
b. 2.n + 9 chia hết cho n - 3
c. 3.n - 1 chia hết cho 3 - 2.n
Tìm n thuộc Z sao cho 2n - 3 chia hết cho n + 1
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Tìm n thuộc N sao cho
n+4 chia hết cho n^2 +1
- Để \(n+4⋮n^2+1\)\(\Rightarrow\)\(\left(n+4\right).\left(n-4\right)⋮n^2+1\)
- Ta có: \(\left(n+4\right).\left(n-4\right)=n^2-4=\left(n^2+1\right)-5\)
- Để \(\left(n+4\right).\left(n-4\right)⋮n^2+1\)\(\Leftrightarrow\)\(\left(n^2+1\right)-5⋮n^2+1\)mà \(n^2+1⋮n^2+1\)
\(\Rightarrow\)\(5⋮n^2+1\)\(\Rightarrow\)\(n^2+1\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
- Vì \(n^2\ge0\forall n\)\(\Rightarrow\)\(n^2+1\ge1\forall n\)
\(\Rightarrow\)\(n^2+1\in\left\{1;5\right\}\)
+ \(n^2+1=1\)\(\Leftrightarrow\)\(n^2=0\)\(\Leftrightarrow\)\(n=0\left(TM\right)\)
+ \(n^2+1=5\)\(\Leftrightarrow\)\(n^2=4\)\(\Leftrightarrow\)\(n=\pm2\)
mà \(n\inℕ\)\(\Rightarrow\)\(n=2\left(TM\right)\)
Vậy \(n\in\left\{0,2\right\}\)
tìm n thuộc N sao cho
a) (3n+1) chia hết cho (2n+3)
b) (n2+5) chia hết cho (n+1)
a,tìm n thuộc z sao cho M=2n-7/n-5 có giá trị nguyên
b,x thuộc z : (3x+2) chia hết cho n-1
a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)
Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)
=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
Nếu n - 5 = -3 => n = -3 + 5 => n = 2
Nếu n - 5 = -1 => n = -1 + 5 => n = 4
Nếu n - 5 = 1 => n = 1 + 5 => n = 6
Nếu n - 5 = 3 => n = 3 + 5 => n = 8
Vậy \(n\in\left\{2;4;6;8\right\}\)
\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)
Với n thuộc Z để M nguyên
\(\Leftrightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{5;4;8;2\right\}\)
Vậy...................................
\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)
\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)
Vậy............................
a, \(\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2(n-5)+3}{n-5}=2+\frac{3}{n-5}\)
M có giá trị nguyên \(\Leftrightarrow n-5\inƯ(3)\)
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy : ....