Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Vô danh đây vip
Xem chi tiết
Kẻ Dối_Trá
29 tháng 7 2016 lúc 8:13

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Đào Tiến Hùng
Xem chi tiết
Gia Ân
Xem chi tiết
Thắng Nguyễn
22 tháng 5 2016 lúc 18:40

c đề thiếu 

Gia Ân
22 tháng 5 2016 lúc 18:42

thiếu gì vậy bạn

Nguyễn Tuấn Minh
22 tháng 5 2016 lúc 18:43

Bạn ơi, cái câu b đấy

Minh tính đc A=22016-1. 

22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha

Mai Anh
Xem chi tiết
doduyminh
Xem chi tiết
Bùi Thị Bảo Châu
19 tháng 4 2023 lúc 21:13

2n-3 chia hết cho n+1

=> 2n+2-5  chia hết cho n+1

=> 2(n+1)-5  chia hết cho n+1

Mà 2(n+1)  chia hết cho n+1 => 5  chia hết cho n+1

=> n+1 thuộc Ư(5) ={1;-1;5;-5}

TH1: n+1=1 => n=0 thuộc Z

TH2: n+1=-1 => n=-2 thuộc Z

TH3: n+1=5 => n=4 thuộc Z

TH4: n+1=-5 => n=-6 thuộc Z

=> n thuộc {0;-2;4;6}

Phạm Thùy Dương
20 tháng 4 2023 lúc 9:07

Ta có: 2�−3⋮�+1

⇔−5⋮�+1

⇔�+1∈{1;−1;5;−5}

hay 

Trần Thế Anh
Xem chi tiết
Tạ Đức Hoàng Anh
18 tháng 3 2020 lúc 20:45

- Để \(n+4⋮n^2+1\)\(\Rightarrow\)\(\left(n+4\right).\left(n-4\right)⋮n^2+1\)

- Ta có: \(\left(n+4\right).\left(n-4\right)=n^2-4=\left(n^2+1\right)-5\)

- Để \(\left(n+4\right).\left(n-4\right)⋮n^2+1\)\(\Leftrightarrow\)\(\left(n^2+1\right)-5⋮n^2+1\)mà \(n^2+1⋮n^2+1\)

\(\Rightarrow\)\(5⋮n^2+1\)\(\Rightarrow\)\(n^2+1\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)

- Vì \(n^2\ge0\forall n\)\(\Rightarrow\)\(n^2+1\ge1\forall n\)

\(\Rightarrow\)\(n^2+1\in\left\{1;5\right\}\)

\(n^2+1=1\)\(\Leftrightarrow\)\(n^2=0\)\(\Leftrightarrow\)\(n=0\left(TM\right)\)

\(n^2+1=5\)\(\Leftrightarrow\)\(n^2=4\)\(\Leftrightarrow\)\(n=\pm2\)

mà \(n\inℕ\)\(\Rightarrow\)\(n=2\left(TM\right)\)

Vậy \(n\in\left\{0,2\right\}\)

Khách vãng lai đã xóa
duong thuy Tram
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 4 2016 lúc 20:39

3n+1 chia hết 2n+3

Vương Nguyên
30 tháng 4 2016 lúc 20:41

3n+1 chia hết 2n+3

minh anh
Xem chi tiết
Tiểu Đào
10 tháng 2 2019 lúc 19:30

a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)

Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)

=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)

Nếu n - 5 = -3 => n = -3 + 5 => n = 2

Nếu n - 5 = -1 => n = -1 + 5 => n = 4

Nếu n - 5 = 1 => n = 1 + 5 => n = 6

Nếu n - 5 = 3 => n = 3 + 5 => n = 8

Vậy \(n\in\left\{2;4;6;8\right\}\)

Đặng Tú Phương
10 tháng 2 2019 lúc 19:32

\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)

Với n thuộc Z để M nguyên 

\(\Leftrightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{5;4;8;2\right\}\)

Vậy...................................

\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)

\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)

Vậy............................

Huỳnh Quang Sang
10 tháng 2 2019 lúc 19:36

a, \(\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2(n-5)+3}{n-5}=2+\frac{3}{n-5}\)

M có giá trị nguyên \(\Leftrightarrow n-5\inƯ(3)\)

n - 5 1-13-3
n6482

Vậy : ....