So sánh $( - \frac{1}{16} )^{300}$ và $( - \frac{1}{2} )^{500}$
SO SÁNH \(\frac{1^{500}}{2}\)VỚI \(\frac{1^{300}}{3}\)
Ta có :
\(\frac{1^{500}}{2}=\frac{1}{2}\)
\(\frac{1^{300}}{3}=\frac{1}{3}\)
Mà 3>2
\(\Rightarrow\frac{1}{2}>\frac{1}{3}\)
Hay \(\frac{1^{500}}{2}>\frac{1^{300}}{3}\)
so sánh: \(\left(\frac{-1}{5}\right)^{300}\)và \(\left(\frac{-1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
\(\frac{-1^{100}}{16^{100}}và\frac{-1^{500}}{2^{500}}\)
Câu 1: so sánh
\(\frac{-1^{100}}{16^{100}}=\frac{-1}{\left(2^4\right)^{100}}=\frac{-1}{2^{400}};\frac{-1^{500}}{2^{500}}=\frac{-1}{2^{500}}\)
Vì 2400<2500 => \(\frac{-1}{2^{400}}>\frac{-1}{2^{500}}\)=>\(\frac{-1^{100}}{16^{100}}>\frac{-1^{500}}{2^{500}}\)
So sánh
a) (-\(\frac{1}{5}\)) 300 và (-\(\frac{1}{3}\))500
b) -\(\frac{1}{2}^{5^1}^{^{^3}}\)với (-\(\frac{1}{3}\))3
em không thể trả lời được
cho em nhé
kết bạn với em nhé
mik đg cần gấp ai giú mik zơi:
1.so sánh
a)\(\left(\frac{-1}{5}\right)^{300}và \left(\frac{-1}{3}\right)^{500}\)
b)\(2^{90}và 5^{36}\)
a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)
\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)
Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)
\(5^{36}=\left(5^6\right)^6=15625^6\)
Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)
a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)
Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)
Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)
Vậy \(2^{90}>5^{36}\)
So sánh
\(x=\frac{300}{-299}\)và \(y=\frac{-500}{507}\)
ta có: \(\frac{300}{-299}< -1\)
\(\frac{-500}{507}>-1\)
\(\Rightarrow\frac{300}{-299}< \frac{-500}{507}\Rightarrow x< y\)
\(x=\frac{300}{-299};y=\frac{-500}{507}\)
Ta có ; \(\frac{300}{299}>1\) \(\frac{500}{507}< 1\)
\(\frac{300}{299}>\frac{500}{507}\)
\(\Rightarrow\frac{300}{-299}< \frac{-500}{507}\)
hok tốt
\(^{x=\frac{300}{-299}}\)<\(^{x=\frac{-500}{507}}\)
k mik nha!
So sánh:
a)\(\left(-32\right)^9\)và \(\left(-16\right)^{13}\)
b)\(\left(\frac{-1}{16}\right)^{100}\)và\(\left(\frac{-1}{2}\right)^{500}\)
Bài 1 So sánh
\(\left(\frac{-1}{16}\right)^{100}\)va \(\left(\frac{-1}{2}\right)^{500}\)
Bài 2 So sánh
A =\(\frac{100^{100}+1}{100^{99}+1}\)Va B =\(\frac{100^{69}+1}{100^{68}+1}\)
Các p ơi giúp mink vs
Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)
So sánh \(\left(\frac{1}{3}\right)^{500}\) với \(\left(\frac{1}{5}\right)^{300}\)
\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)
\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)
Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)
3-500=(35)-100= 243-100
5-300= (53)-100 =125-100
243>125 => 243-100<125-100
Hay 3-500 <5-300
kết quả so sánh x= \(\frac{\left(1\right)^{300}}{5}\)va y=\(\frac{\left(1\right)^{500}}{3}\)