Tính tổng:
S = 1 + 3 + 5 + 7 + … + 19 + 21
Tính tổng:S=3+5+7+...+2015
\(S=3+5+7+...+2015\\ S=\left[\left(2015-3\right):2+1\right]:2\times\left(2015+3\right)\\ S=\left[2012:2+1\right]:2\times2018\\ S=1016063\)
Tính tổng:S=7/3*5+7/5*7+...+7/59*61
Bài làm
\(S=\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{59.61}\)
\(S=7\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(S=7\left(\frac{1}{3}-\frac{1}{61}\right)\)
\(S=7\left(\frac{61}{183}-\frac{3}{183}\right)\)
\(S=7.\frac{58}{183}\)
\(S=\frac{406}{183}\)
Tính tổng:S=5/6+11/12+19/20+...+89/90
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+....+\frac{89}{90}\)
\(S=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+....+\left(1-\frac{1}{90}\right)\)
\(S=\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+\left(1-\frac{1}{4.5}\right)+....+\left(1-\frac{1}{9.10}\right)\)
\(S=\left(1+1+1+....+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(S=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(S=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=8-\frac{2}{5}=\frac{38}{5}\)
Tính nhanh C=3/1*3*5+3/3*5*7+3/5*7*9+...+3/19*21*23+3/21*23*25
Tính nhanh tổng:
a, S=1 - 1/5 +7/12 -9/20 + 11/30 - 13/42 + 15/56 + 19/90 - 21/110 + 23/132
b, P=21 * (4/1*3 - 8/3*5 + 12/5*7 - 16/7*9 + ... + 36/17*19 - 40/19*21 ( dấu * là dấu nhân nhé)
B=1×3+3×5+5×7+......+19×21
Tính B
Ta có: \(B=1\cdot3+3\cdot5+\cdots+19\cdot21\)
\(=1\left(1+2\right)+3\left(3+2\right)+\cdots+19\left(19+2\right)\)
\(=\left(1^2+3^2+\cdots+19^2\right)+2\left(1+3+\cdots+19\right)\)
Đặt \(A=1^2+3^2+\cdots+19^2\)
\(=1^2+2^2+\cdots+20^2-\left(2^2+4^2+\cdots+20^2\right)\)
\(=\left(1^2+2^2+\cdots+20^2\right)-2^2\left(1^2+2^2+\cdots+10^2\right)\)
\(=\frac{20\left(20+1\right)\left(2\cdot20+1\right)}{6}-4\cdot\frac{10\left(10+1\right)\left(2\cdot10+1\right)}{6}\)
\(=\frac{20\cdot21\cdot41}{6}-4\cdot\frac{10\cdot11\cdot21}{6}=10\cdot7\cdot41-4\cdot5\cdot11\cdot7\)
=2870-1540
=1330
Đặt C=1+3+...+19
Số số hạng của dãy số là: \(\frac{19-1}{2}+1=\frac{18}{2}+1=9+1=10\) (số)
Tổng của dãy số là: \(\left(19+1\right)\cdot\frac{10}{2}=20\cdot\frac{10}{2}=10\cdot10=100\)
Ta có: B\(=\left(1^2+3^2+\cdots+19^2\right)+2\left(1+3+\cdots+19\right)\)
=1330+2*100
=1330+200
=1530
Tính nhanh 1\1*3*5+1\3*5*7+1\5*7*9+...+1\17*19*21
=1/1.3.5+1/3/5/7+1/5.7.9+......+1/17/19/21
=1/4.(5-1/1.3.5+7-3/3.5.7+.....+21-17/17/19/21
=1/4.(5/1.3.5-1/1.3.5+7/3.5.7-3/3.5.7+.....+21/17.19.21-17/17.19.21
=1/4.(1/1.3-1/3.5+1/3.5-1/5.7+.....+1/17.19-1/19.21)
=1/4.(1/3.1/21.17)
=1/4.3200/9603
= 800/9603
Chúc bạn học tốt^^
Đặt \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{17.19.21}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{17.19.21}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{17.19}-\frac{1}{19.21}\)
\(=\frac{1}{1.3}-\frac{1}{19.21}=\frac{44}{133}\)
\(\Rightarrow A=\frac{44}{133}\div4=\frac{11}{133}\)
thực hiện phép tính :
a, -1/2 + 19/23+ -9/2+ 4/23 +3 /-6
b. 5/13+ -5/7 +-20/41 + 8/13 +-21/41
c.-5/7 x 19/41 + 5/7 x -21/41 + 5/7
d. 7/3 +1/2 - -3/70
Đây là phân số
tính A = (-1) + 3 - 5 + 7 - ..... + 17 - 19 + 21
Tính tổng: S = 1 + 3 + 5 + 7 + … + 19 + 21