Tìm số tự nhiên nhỏ nhất khi chia cho $8$, $9$ và $12$ được số dư lần lượt là $6$, $7$ và $10$.
Tìm số tự nhiên nhỏ nhất khi chia cho 9, 10 và 12 được số dư lần lượt là 5, 6 và 8.
9
vuhohbriyhwifgfsdccccccccccccccccccccccccccccccccccccccccccc
Gọi số tự nhiên cần tìm là n \(n\in N\)
Theo đề ta có
\(\hept{\begin{cases}n\div9dư5\\n\div10dư6\\n\div12dư8\end{cases}}\Rightarrow\hept{\begin{cases}n+4⋮9\\n+4⋮10\\n+4⋮12\end{cases}}\)
=>n+4 thuộc bội chung (9,10,12) mà n nhỏ nhất
=>n+4 = bội chung nhỏ nhất (9,10,12)
=>n+4=180
=>n=180-4
=>n=176
Vậy số tn phải tìm là 176
Hok tốt !!!!!!!!!!!!!
mik viết nhầm đoạn theo đề ta có
\(\hept{\begin{cases}n\div9dư5\\n\div10dư6\\n\div12dư8\end{cases}}\)
Tìm số tự nhiên nhỏ nhất khi chia cho 9,10 và 12 được số dư lần lượt là 7, 8 , và 10
Gọi số cần tìm là a ; (a > 0)
Ta có : \(\hept{\begin{cases}a:9\text{ dư 7}\\a:10\text{ dư 8}\\a:12\text{ dư 10}\end{cases}}\Rightarrow\hept{\begin{cases}a+2⋮9\\a+2⋮10\\a+2⋮12\end{cases}}\Rightarrow a+2\in BC\left(9;10;12\right)\)
Mà a nhỏ nhất
=> \(a+2\in BCNN\left(9;10;12\right)\)
Ta có 9 = 32
10 = 2.5
12 = 22.3
=> BCNN(9;10;12) = 32 . 22,5 = 180
=> a + 2 = 180
=> a = 178
Tìm số tự nhiên nhỏ nhất chia hết cho 23 và khi chia cho 8, 12, 15 được số dư lần lượt là 6, 10, 13
Tìm số tự nhiên nhỏ nhất chia hết cho 23 và khi chia cho 8, 12, 15 được số dư lần lượt là 6, 10, 13
Gọi số phải tìm là a, a ∈ N
Vì a chia cho 8,12,15 được số dư lần lượt là 6,10,13 nên (a+2) chia hết cho 8,12,15.
Suy ra (a+2) ∈ BC(8,12,15)
Ta có: 8 = 2 3 ; 12 = 2 2 . 3 ; 15 = 3.5
=> BCNN(8,12,15) = 2 3 .3.5 = 120
Suy ra (a+2) ∈ BC(8,12,15) = B(120)
Do đó, a+2 = 120k => a = 120 – 2 (k ∈ N*)
Lần lượt cho k = 1,2,3,… đến k = 5 thì được a = 598 ⋮ 23
Vậy số phải tìm là 598
Tìm số tự nhiên nhỏ nhất khi chia cho 9, 10 và 12 được số dư lần lượt là 8, 9 và 11.
Gọi số tự nhiên cần tìm là a
Ta có : \(\hept{\begin{cases}a:9\text{ dư 8}\\a:10\text{ dư 9}\\a:12\text{ dư 11}\end{cases}\Rightarrow\hept{\begin{cases}\left(a+1\right)⋮9\\\left(a+1\right)⋮10\\\left(a+1\right)⋮12\end{cases}}\Rightarrow a+1\in BC\left(9;10;12\right)}\)
Mà a nhỏ nhất
=> \(a+1\in BCNN\left(9;10;12\right)\)
Lại có : 9 = 32
10 = 2.5
12 = 22.3
=> a + 1 = BCNN(9;10;12) = 32.22.5 = 180
=> a + 1 = 180
=> a = 179
Vậy số cần tìm là 179
Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, và 9 được số dư lần lượt là 5, 6, và 8
gọi STN nhỏ nhất là x
Theo bài ra ta có:
x : 6 dư 5
x : 7 dư 6
x : 9 dư 8
x nhỏ nhất
=) x : 6 -5 chia hết cho 6
x : 7- 6 chia hết cho 7
x : 9 -8 chia hết cho 9
x nhỏ nhất
=) x : 6-5 ; x : 7-6 ; x : 9-8 chia hết cho 6,7,9
từ đó biết đc 6,7,9 là ước , còn lại là bội
dùng côn g thức tính ước chung bội chung là xong
a) Tìm số tự nhiên nhỏ nhất khi chia số đó cho 6, 7, 9 được các số dư lần lượt là: 2, 3, 5.
b) Tìm số tự nhiên a sao cho chia số đó cho 17, 25 được các số dư theo thứ tự là 8 và 16.
a) Tìm số tự nhiên nhỏ nhất khi chia số đó cho 6, 7, 9 được các số dư lần lượt là: 2, 3, 5.
b) Tìm số tự nhiên a sao cho chia số đó cho 17, 25 được các số dư theo thứ tự là 8 và 16.
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.