chứng minh1/căn bậc 2 của 1+..........+1/căn bậc 2 của 100>10
(căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) + (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1)-1 : (căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) - (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1) + 1
0.5 x căn bậc 2 của 100 - căn bậc 2 của 1/2 +6.5
\(0,5.\sqrt[]{100}-\sqrt[]{\dfrac{1}{2}+6,5}\)
\(=0,5.10-\sqrt[]{\dfrac{1}{2}+\dfrac{13}{2}}\)
\(=5-\sqrt[]{7}\)
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 .tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của b+căn bậc ba của c
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của bạn+căn bậc ba của c
((căn bậc hai của x)/2 x -2 + 3- (căn bậc hai của x)/2x -2 );(( căn bậc hai của x) +1/x+(căn bậc hai của x )+1 + (căn bậc hai của x)+2/ x( căn bậc hai của x )-1) rut gon
căn bậc hai của 10+2*căn bậc hai của 24-căn bậc hai của 10-2*căn bậc hai của 24
Chứng tỏ : căn bậc hai của 2 +căn bậc 2 của 6+căn bậc 2 của 12+căn bậc 2 của 20 < 12.
Với \(a,b>0;a\ne b\)ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)
Áp dụng ta được:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)
\(=\sqrt{16}+\sqrt{64}=4+8=12\)
Ta có đpcm.