cho hình thang ABCD , AB là đáy nhỏ ,CD là 7cm góc C = 60 , Tínhđường cao AH của hình thang
cho hình thang cân ABCD có đáy lớn là CD = 7cm , C = 60 độ , BC = 4cm .tính độ dài đường trung bình MN của hình thang và đường cao AH
cho hình thang ABCD (ab//cd) có A=B=60 độ và AB=8cm .kẻ các đường cao AH và BK của hình thang cân ABCD.biết CK=2cm .tính các góc còn lại và độ đáy CD của hình thang cân ABCD . Cho cả hình
ABCD là hình thang cân
=>góc ADC=góc DCB=180-60=120 độ
AB//CD
=>góc KCB=góc CBA=60 độ
Xét tứ giác ABKH có
KH//AB
AH//BK
Do đó: ABKH là hình bình hành
=>AB=KH=8cm
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc ADH=góc BCK
Do đó: ΔAHD=ΔBKC
=>HD=KC=2cm
HD+DC+CK=HK
=>2+2+DC=8
=>DC=4(cm)
cho hình thang cân abcd có góc c= 60 độ đáy nhỏ ad=ab=cd. tính các cạnh hình thang biết chu vi của nó là 20cm
1/Cho hình thang ABCD ( AB//CD), biết góc A = 100 độ, góc B =120 độ, tìm số đo góc C và góc D
2/Hình thang Câ ABCD có đáy nhỏ AB =10 cm, đáy lớn CD =20 cm và đường cao AH = 12cm. Tính độ dài cạnh bên
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)
Cho hình thang cân ABCD AB // CD đáy nhỏ AB =3cm đường cao AH=5 cm góc D=45 độ
Tính độ dài của đáy lớn CD
kẻ BK\(\perp\)DC
Xét ΔAHD vuông tại H có \(tanD=\dfrac{AH}{HD}\)
=>\(\dfrac{5}{HD}=tan45=1\)
=>HD=5/1=5(cm)
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAHD=ΔBKC
=>DH=KC
mà DH=5cm
nên KC=5cm
Ta có: AB//DC
\(H,K\in DC\)
Do đó: AB//HK
Ta có: AH\(\perp\)DC
BK\(\perp\)DC
Do đó: AH//BK
Xét tứ giác ABKH có
AB//KH
AH//BK
Do đó: ABKH là hình bình hành
=>AB=HK=3cm
DC=DH+HK+KC
=5+5+3
=13(cm)
Cho hình thang ABCD có đáy nhỏ AB là 19 cm, đáy lớn CD là 25cm. Nếu kéo dài đáy nhỏ thêm 7cm thì được diện tích của hình thang tăng thêm
42cm242cm2
. Tính diện tích hình thang đã cho?
diện tích hình thang đã cho là:
19+25=44(cm2)
đáp số:44cm2
k nha bạn đúng đó
100%
Cho hình thang ABCD, AB song song với CD, đường cao AH. Biết AB = 7cm; CD = 10cm, diện tích của ABCD là 25 , 5 c m 2 thì độ dài AH là:
A. 2,5cm
B. 3cm
C. 3,5cm
D. 5cm
Ta có: SABCD = ( A B + C D ) . A H 2
=> AH = 2 S A B C D A B + C D = 2.25 , 5 7 + 10 = 3(cm)
Đáp án cần chọn là: B
cho hình thang cân ABCD đáy lớn AB=18cm; cạnh bên AD dài 7cm và cạnh bên AD tạo với đáy lớn AB 1 góc 60. Tính chiều cao , đáy nhỏ,2 đường chéo và diện tích hình thang cân đó
Bài 1: Cho hình thang cân ABCD có đáy lớn CD = 7cm, góc C = 600, BC = 4cm. Tính độ dài đường trung bình của hình thang.
Bài 2; Cho hình thang cân ABCD có đáy lớn CD = 9cm, AB = 3cm, cạnh BC = 5cm. Tính diện tích hình thang ABCD.
Ghi đầy đủ lời giải giúp mình nhé. Cảm ơn.
Cho hình thang ABCD có đáy lớn CD bằng 3 lần đáy nhỏ AB; đường cao AH của hình thang có độ dài là 3m; diện tích hình thang ABCD là 30 m2.
1) Tính độ dài mỗi đáy của hình thang.
2) Kéo dài DA, CB cắt nhau tại E. Biết AD 2/3 DE. Tính diện tích tam giác EAB?
1: \(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
=>\(\left(AB+3AB\right)\cdot\dfrac{1}{2}\cdot3=30\)
=>4AB=20
=>AB=5(m)
CD=3*AB=15(m)
2:
Xét ΔEAB có AB//CD
nên \(\dfrac{EA}{ED}=\dfrac{AB}{CD}\)
=>\(\dfrac{EA}{ED}=\dfrac{1}{3}\)
Xét ΔEAB và ΔEDC có
\(\widehat{E}\) chung
\(\dfrac{EA}{ED}=\dfrac{EB}{EC}\)
Do đó: ΔEAB đồng dạng với ΔEDC
=>\(\dfrac{S_{EAB}}{S_{EDC}}=\left(\dfrac{AB}{DC}\right)^2=\dfrac{1}{9}\)
=>\(\dfrac{S_{EAB}}{S_{ABCD}}=\dfrac{1}{8}\)
=>\(S_{EAB}=\dfrac{30}{8}=3,75\left(m^2\right)\)