CMR : a) (2a+3b) chia hết cho 15 , b) (a+5b)chia hết cho 9 , c) (7a - b ) chia hết cho 9
cho : ( 2a+3b) chia hết cho 15, CMR ( 9a+6b) chia hết cho 15 . Điều ngược lại có đúng không?
cho :( 7a-b) chia hết cho 9, CMR ( a+5b) chia hết cho 9
a)9a+6b=(9+60)*(a+b)=15*(a+b)
vì 15 : 15 nên a+b cũng chia hết cho 15
điều ngược lại thì mk 0 hiểu
CMR:
a, 7x+ 4y \(⋮\)37 \(\Leftrightarrow\)13x +18y \(⋮\)37
b, 2x +3y chia hết cho 17 \(\Leftrightarrow\)9x +5y chia hết cho 17
c, Cho (2a +3b) \(⋮\)15. CMR: (9a+6b) \(⋮\)15
d, Cho (7a- b) \(⋮\)9. CMR: (a+5b) \(⋮\)9
a) cho2a + 3b chia hết cho 5 chứng minh ( 3a + 2b ) chia hết cho 5
b) cho 7a + b chia hết cho 11 chứng minh ( 2a + 5b ) chia hết cho 11
a) Cho 2a + 3b chia hết cho 5 . Chứng minh ( 2a + 5b ) chia hết cho 5
b) Cho 7a + b chia hết cho 11 . Chứng minh ( 2a + 5b ) chia hết cho 11
ai giải nhanh mình tick cho nhớ đầy đủ đó
cho a;b thuộc N
a) biết 2a+3b chia hết cho 17. chứng minh 9a+5b chia hết cho 17
b) biết 9a+5b chia hết cho 17. chứng minh 2a+3b chia hết cho 17
cho a,b thuộc Z và 2a + 3b chia hết cho 7.
CMR 8a + 5b chia hết cho 7
Giả sử 8a + 5b \(⋮\) 7 (1)
Vì 2a + 3b \(⋮\) 7 nên 3(2a + 3b) \(⋮\) 7
=> 6a + 9b \(⋮\) 7 (2)
Từ (1) và (2) => (8a + 5b) + (6a + 9b) \(⋮\) 7
=> 8a + 5b + 6a + 9b \(⋮\) 7
=> (8a + 6a) + (5b + 9b) \(⋮\) 7
=> 14a + 14b \(⋮\) 7
=> 7(2a + 2b) \(⋮\) 7
=> Giả sử đúng
Vậy 8a + 5b \(⋮\) 7 (đpcm)
Cho a;b thuộc N thỏa mãn 7a+3b chia hết cho 23
CMR 4a+5b chia hết cho 23
nếu 4a + 5b chia hết cho 23 (1)
(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)
(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23
\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23
(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))
Vậy 4a + 5b chia hết cho 23
Giải:
Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)
\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)
\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)
Vậy \(4a+5b⋮23\) (Đpcm)
Cho a,b là số nguyên
CMR 2a + 3b chia hết cho 7 (=) 8a + 5b chia hết cho 7
Làm nhanh hộ mik vs
Ta có 2a+3b chia hết cho 7
=> 4.(2a+3b) chia hết cho 7
=> 8a+12b chia hết cho 7 (1)
Vì 7 chia hết cho 7 nên 7b cũng chia hết cho 7 (2)
Từ (1) và (2) => (8a+12b) - 7b chia hết cho 7
=> 8a+5b chia hết cho 7 (đpcm)
1. Với a,b là các số tự nhiên. CMR:
Nếu 5a+3b và 13a+8b cùng chia hết cho 2012, thì a và b chia hết cho 2012
2. Với a và b là các số tự nhiên thỏa mãn (7a+3b) chia hết cho 23
CMR: (4a+5b) chia hết cho 23
GIÚP MK VỚI ^_^!!!!
@@@@@@@@@@@@
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.