tìm các cặp số nguyên (x,y) thỏa mãn :
4x^2+4x+y^2-6y=24
tìm các cặp số nguyên x,y thỏa mãn 4xy-6y+4x=1t6
tìm các cặp số nguyên x,y thỏa mãn 4xy-6y+4x
Tìm các cặp số nguyên (x;y) thỏa mãn : \(4x^2+8x=38-6y^2\)
ủa ko có nghiệm ?
mình chép đề bài đúng rồi nha bạn , mình cũng đang nghi là vô nghiệm đây nhưng vẫn đăng hỏi thử
\(\left(x+1\right)^2=13-\frac{3}{2}y^2\) lẻ thế này thì s có nghiệm nguyên được ?
Tìm các cặp số nguyên x, y thoả mãn 4x^2+y^2+4x-6y+5=0.
Các bạn giúp mình với
Tìm các số x,y nguyên dương thoả mãn điều kiện:
4x^2+4x+y^2-6y=24
\(4x^2+4x+y^2-6y=24\)
\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)
\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)
\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)
Vay.....
\(4x^2+4x+y^2-6y=24\)
\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)
\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)
Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)
Vì là nghiệm nguyên dương nên:
\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\) hoặc \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)
Vậy các cặp số (x;y) là: (1;8);(2;6)
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm các cặp số nguyên x y thỏa mãn x2+4x-y2=1
Tìm các cặp số nguyên x y thỏa mãn x2+4x-y2=1
x2 + 4x -y2 = 1
=> x2 + 4x - y2 + 4 = 1 + 4 = 5
=> (x2 + 4x + 4) - y2 = 5
=> (x+2)2 - y2 = 5
=> (x+2-y)(x+2+y) = 5
Ta có:
1.5=5
mà x+2-y < x+2+y
=> \(\hept{\begin{cases}\text{x+2-y=1}\\\text{x+2+y}=5\end{cases}}\)=> \(\hept{\begin{cases}x-y=-1\\x+y=3\end{cases}}\)
Từ x-y = -1 => x = y - 1
Thay x = y - 1 vào x + y, ta có:
x + y = y - 1 + y = 3
=> 2y - 1 = 3
=> 2y = 4 => y=2
=> x = 2 - 1 = 2
Vậy x=2; y = 1 thì x2 + 4x -y2 = 1
tìm các cặp số nguyên dương (x,y) thỏa mãn 3x^2+y^2+4xy+4x+2y+5=0
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn :
\(x^2-y^2=4x+3\)
giải chi tiết dùm mìh với ạ
\(\Leftrightarrow x^2-4x+4-y^2=7\)
\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)
\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)
Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu