Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Harry Potter
Xem chi tiết
Harry Potter
Xem chi tiết
Harry Potter
9 tháng 3 2021 lúc 15:33

4xy-6y+4x nhé

Khách vãng lai đã xóa
phungminhanh
9 tháng 3 2021 lúc 15:51

4xy-6y+4x

Khách vãng lai đã xóa
Harry Potter
9 tháng 3 2021 lúc 18:14

4xy-6y+4x=16

Khách vãng lai đã xóa
Bạch Dạ Y
Xem chi tiết
Super Star 6a
3 tháng 10 2021 lúc 22:54

ủa ko có nghiệm ? 

Khách vãng lai đã xóa
Bạch Dạ Y
3 tháng 10 2021 lúc 22:56

mình chép đề bài đúng rồi nha bạn , mình cũng đang nghi là vô nghiệm đây nhưng vẫn đăng hỏi thử

Khách vãng lai đã xóa
Super Star 6a
3 tháng 10 2021 lúc 22:58

\(\left(x+1\right)^2=13-\frac{3}{2}y^2\)   lẻ thế này thì s có nghiệm nguyên được ?

Khách vãng lai đã xóa
Hoàng Nam Bùi
Xem chi tiết
Nguyen Duc
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 7 2019 lúc 7:34

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

Vay.....

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)

Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)

Vì là nghiệm nguyên dương nên:

\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc     \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\)         hoặc     \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)           hoặc      \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)

Vậy các cặp số (x;y) là: (1;8);(2;6)

Quang Huy Nguyen
Xem chi tiết
Bùi Minh Châu
18 tháng 2 lúc 17:00

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

Nguyễn Văn Nguyên
13 tháng 12 lúc 19:32

3x + 9xy - 6y
 

 

Nguyễn Hông Quyên
Xem chi tiết
Lương Thị Lu
8 tháng 1 2022 lúc 22:58

Đáp án trong hình

undefined

Khách vãng lai đã xóa
Trịnh Quang Minh
26 tháng 2 lúc 22:35

2 - 1 = 1 chứ

 

Nguyễn Hồng Quyên
Xem chi tiết
Lương Thị Lu
8 tháng 1 2022 lúc 22:55

x+ 4x -y2 = 1

=> x+ 4x - y2 + 4 = 1 + 4 = 5 

=> (x+ 4x + 4) - y2 = 5 

=> (x+2)2 - y2 = 5

=> (x+2-y)(x+2+y) = 5

Ta có:

1.5=5

mà x+2-y < x+2+y

=> \(\hept{\begin{cases}\text{x+2-y=1}\\\text{x+2+y}=5\end{cases}}\)=> \(\hept{\begin{cases}x-y=-1\\x+y=3\end{cases}}\)

Từ x-y = -1 => x = y - 1

Thay x = y - 1 vào x + y, ta có:

x + y = y - 1 + y = 3

=> 2y - 1 = 3

=> 2y = 4 => y=2

=> x = 2 - 1 = 2

Vậy x=2; y = 1 thì x+ 4x -y2 = 1

Khách vãng lai đã xóa
Trần Thanh Trà
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

Giúp mihf giải với ạ
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 2022 lúc 16:33

\(\Leftrightarrow x^2-4x+4-y^2=7\)

\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)

\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)

Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu