Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu gia huy
Xem chi tiết
Mêng chang
Xem chi tiết
Miu Nà
Xem chi tiết
Hiệu Nguyễn Huy
Xem chi tiết
Hoàng Lê Bảo Quyên
Xem chi tiết
Nguyễn Minh Thanh
Xem chi tiết
Nguyễn Hòa An
3 tháng 3 2019 lúc 9:25

A B E H K D C

                                 Chứng minh:

a) Ta có HAC^+ACH^=90(TAM GIÁC AHC VUÔNG)

         KBC^+ACH^=90(TAM GIÁC KBC VUÔNG)

=> HAC^=KBC^

b)Ta có CBE^ là góc ngoài tại B của tan giác CBE nên CBE^=BKC^+BCK^=90 + BCK^

   Lại có CAD^ là góc ngoài tại A của tam giác DAC nên DAC^=AHC^+BCK^ =90 + BCK^  

=>CBE^ = DAC^

xét tam giác CBE và  DAC có:

DA=BC

DAC^=CBE^

BE=AC

Do đó tam giác CBE = tam giác DAC ( c.g.c)

c)  => ADC^=BCE^

Mà ADC^ + HCD^= 90

    =>BCE^ = HCD^ =90

    =>DCE^ = 90

   => DC VUÔNG GÓC CE

Tớ cuồng xô
Xem chi tiết
Tớ cuồng xô
25 tháng 12 2016 lúc 22:56

.

Tớ cuồng xô
25 tháng 12 2016 lúc 22:57

.

Kỳ Tỉ
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Học Giỏi Đẹp Trai
10 tháng 12 2016 lúc 19:56

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE