Cho A = 10 + 35 + 75 + 90 + x
a, tìm x để A ⋮ 5
b, tìm x để A ≠ 5.
Bài1: Cho A= √x-3/2. Tìm x ∈ Z và x < 30 để A có giá trị nguyên
Bài2: Cho B = 5/√x-1. Tìm x ∈ Z để B có giá trị nguyên
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
a. Tìm x để biểu thức A=1000-|x+5| đạt giá trị lớn nhất
b. Tìm x để biểu thức B=|x-3|+5 đạt giá trị nhỏ nhất
a. A=1000-|x+5| < 1000
=> GTLN của A là 1000
<=> x + 5 = 0
<=> x = -5
b. B = |x-3| + 5 > 5
=> GTNN của B là 5
<=> x - 3 = 0
<=> x = 3
a) A = 1000 - |x + 5| \(\le\)1000
Vậy GTLN của A = 1000 khi
|x + 5| = 0 => x= -5
b)B = |x - 3| + 5 \(\ge\) 5
Vậy GTNN của B = 5 khi
|x - 3| = 0 => x = 3
Cho biểu thức: M = x-2 phần x+5
a. Tìm x để M là phân số
b. Tìm X thuộc Z để M có giá trị nguyên
a)M là p/s <=>x+5 \(\ne\) 0<=>x \(\ne\) -5
Vậy x \(\ne\) -5 thì M là p/s
b)M nguyên<=>x-2 chia hết cho x+5
<=>(x+5)-7 chia hết cho x+5
mà x+5 chia hết cho x+5
=>7 chia hết cho x+5
=>x+5 E Ư(7)={-7;-1;1;7}
=>x E {-12;-6;-4;2}
vậy...
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
P = \(\frac{x^2+2x}{2x+10}\)+ \(\frac{x-5}{x}\)+ \(\frac{50-5x}{2x^2+10}\)
a) tìm ĐKXĐ
b ) Rút gọn P
c) Tìm x để P =1
d ) Tìm x để P >1
Cho phân thức
A= \(\dfrac{x^2-6x+9}{x^2-x-6}\)
a, Tìm điều kiện của x để giá trị của A được xác định
b, Rút gọn A
c, Tìm x∈Z để giá trị của A nguyên
\(a,ĐK:x\ne3;x\ne-2\\ b,A=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+2\right)}=\dfrac{x-3}{x+2}\\ c,A\in Z\Leftrightarrow\dfrac{x+2-5}{x+2}=1-\dfrac{5}{x+2}\in Z\\ \Leftrightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-7;-3;-1;3\right\}\left(tm\right)\)
Cho bt M=cănx - 2 phần 3cănx
a) tìm x để M= -1
b) tìm x để M < 0
a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
=> \(4\sqrt{x}=2\)
=> \(x=\frac{1}{4}\)
b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}
a) Cho A= √X−3/2. Tìm x thuộc Z và x<30 để A có giá trị nguyên
b) Cho B= 5/√X−1 tìm x thuộc Z để B có giá trị nguyên
a) Cho A= \(\frac{\sqrt{X}-3}{2}\). Tìm x thuộc Z và x<30 để A có giá trị nguyên
b) Cho B= \(\frac{5}{\sqrt{X}-1}\)tìm x thuộc Z để B có giá trị nguyên
a) Để A thuộc Z => \(\sqrt{x}\)- 3thuộc ước của 2 => \(\sqrt{x}\)- 3 thuộc -1; -2;1;2
=> căn x = 1 hoặc 2
câu b làm tương tự