cho tam giac ABC, AD là phân giác ngoài góc BAC.
CMR:\(AD^2=DB.DC-AB.AC\)
Cho tam giác ABC, AD là đường phân giác ngoài góc A . Chứng minh AD^2 = DB.DC - AB.AC?
Trên tia AD lấy điểm E sao cho ^BEA = ^BCA.
Khi đó ^BED = ^ACD và ^BDE = ^ADC nên hai tam giác BDE và ADC đồng dạng
suy ra BD/AD = DE/DC
suy ra AD.DE = DB.DC (1).
Gọi F là điểm đối xứng với C qua đường thẳng AD
vì AD là phân giác ^BAC nên F thuộc AB,
từ tính chất đối xứng suy ra ^DFA = ^DCA và AF = AC,
vì ^DCA = ^BCA = ^BEA nên ^DFA = ^BEA,
cùng với ^A chung nên hai tam giác DFA và BEA đồng dạng,
suy ra AD/AB = AF/AE = AC/AE, suy ra AD.AE = AB.AC (2).
Từ (2) và (1) theo vế thì có AD.(AE - DE) = AB.AC - DB.DC, suy ra AD^2 = AB.AC - DB.DC.
Cho tam giác ABC , cho AD là đường phân giác trong của góc A. Chứng minh rằng: AD^2=AB.AC-DB.DC
Trên cùng một nửa mặt phẳng bờ \(BC\)không chứa \(A\)lấy tia \(Cx\)sao cho \(\widehat{BAD}=\widehat{BCx}\).
Kéo dài \(AD\)cắt \(Cx\)tại \(E\).
Xét \(\Delta DAB\)và \(\Delta DCE\)có:
\(\widehat{ADB}=\widehat{CDE}\)(vì đối đỉnh).
\(\widehat{BAD}=\widehat{BCE}\)(hình vẽ trên).
\(\Rightarrow\Delta DAB~\Delta DCE\left(g.g\right)\).
\(\Rightarrow\widehat{ABD}=\widehat{CED}\)(2 góc tương ứng).
\(\Rightarrow\widehat{ABD}=\widehat{CEA}\)
Và \(\frac{AD}{CD}=\frac{DB}{DE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.DE=BD.CD\)\(\left(1\right)\).
Xét \(\Delta BAD\)và \(\Delta EAC\)có:
\(\widehat{BAD}=\widehat{EAC}\)(giả thiết).
\(\widehat{ABD}=\widehat{AEC}\)(chứng minh trên).
\(\Rightarrow\Delta BAD~\Delta EAC\left(g.g\right)\).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.AE=AB.AC\)\(\left(2\right)\).
Từ \(\left(1\right)\)và \(\left(2\right)\).
\(\Rightarrow AD.AE-AD.DE=AB.AC-BD.CD\).
\(\Rightarrow AD\left(AE-DE\right)=AB.AC-BD.CD\).
\(\Rightarrow AD.AD=AB.AC-BD.CD\).
\(\Rightarrow AD^2=AB.AC-BD.CD\)(điều phải chứng minh).
Cho tam giác ABC ( AB < AC), phân giác AD. Ở miền ngoài tam giác ABC vẽ tia Cx sao cho góc BCx bằng góc BAD. Gọi I là giao điểm của Cx và AD. Chứng minh rằng:
a) tam giác ABD đồng dạng với tam giác ACI
b) AD bình phương = AB.AC - DB.DC
Cho tam giac ABC (AB ≠ AC), phân giác AD. Trên nửa mặt phẳng bờ BC không chứa A vẽ góc BCx bằng góc BAD. Gọi E là giao điểm của Cx và AD. Chứng minh:
a, △ADB ∼ △ACE
b, △ADB ∼ △CDE
c, AD2 = AB.AC - DB.DC
b) Xét ΔADB và ΔCDE có
\(\widehat{ADB}=\widehat{CDE}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{ECD}\)(gt)
Do đó: ΔADB\(\sim\)ΔCDE(g-g)
Cho tam giác ABC, đường phân giác AD. Chứng minh AD2 = AB.AC - DB.DC
Bạn tự vẽ hình nhé :))
Từ B kẻ tia Bx cắt AD tại E sao cho góc ABE = góc ADC.
\(\Delta AEB\)và \(\Delta ACD\)có: góc ABE = góc ADC (cách dựng) và góc BAE = góc DAC (gt)
\(\Rightarrow\)\(\Delta AEB\)đồng dạng \(\Delta ACD\)\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AE}{AC}\)\(\Rightarrow\)\(AB.AC=AE.AD\)(1)
\(\Rightarrow\)góc BED = góc ACD.
\(\Delta ACD\)và \(\Delta BED\)có: góc ACD = góc BED (cmt) và góc ADC = góc BDE (đối đỉnh)
\(\Rightarrow\)\(\Delta ACD\)đồng dạng \(\Delta BED\)\(\Rightarrow\)\(\frac{DB}{AD}=\frac{DE}{DC}\)\(\Rightarrow\)\(DB.DC=DE.AD\)(2)
Lấy (1) - (2) vế theo vế ta được \(AB.AC-DB.DC=AD\left(AE-DE\right)\)\(\Leftrightarrow\)\(AD^2=AB.AC-DB.DC\)(đpcm).
Bài 2:
2cm x 3 = 6cm 2kg x 4 = 8kg
2cm x 5 = 10cm 2kg x 6 = 12kg
2dm x 8 = 16cm 2kg x 9 = 18kg
Bài 3:
Số bánh xe của 78 xe đạp là:
2 x 8 = 16 (bánh xe)
Đáp số: 16 bánh xe.
Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.
Bài 5:
Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.
Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgUlUPRO
cho 3 giác ABC(AB<AC) phân giác trog AD. trên tia đối DA lấy I sao cho góc BAD = góc DCI
a/ 3 giác ADB đong dạng 3 giác CDI
b/AD trên AC = AB trên AI
c/AD bình phương =AB.AC - DB.DC
d/ AE phân giác ngoài 3 giác ABC( E thuộc BC) . CMR : DE trên DC = EB trên EC và AE bình phương = EC.EB -AB.AC
cho 3 giác ABC(AB<AC) phân giác trog AD. trên tia đối DA lấy I sao cho góc BAD = góc DCI
a/ 3 giác ADB đong dạng 3 giác CDI
b/AD trên AC = AB trên AI
c/AD bình phương =AB.AC - DB.DC
d/ AE phân giác ngoài 3 giác ABC( E thuộc BC) . CMR : DE trên DC = EB trên EC và AE bình phương = EC.EB -AB.AC
Cho tam giác ABC (AB khác AC), phân giác AD. Trên nửa mặt phẳng bờ BC không chứa A vẽ góc BCx=góc BAD. Gọi E là giao điểm của Cx và AD. Chứng minh:
a) Tam giác ADB đồng dạng tam giác ACE
b) Tam giác ADB đồng dạng tam giác CDE
c) AD^2=AB.AC-DB.DC
Cho tam giác ABC (AB<AC), phân giác AD. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Cx sao cho góc BCx = góc BAD. Gọi I là trung điểm của Cx và AD.
Chứng minh: a) tam giấc ADB đồng dạng với tam giác ACI; tam giấc ADB đồng dạng với tam giác CDI
b) AD^2=AB.AC-DB.DC