Cho tam giác ABC vuông tại A, gọi I là giao điểm các đường phân giác. Kẻ CH vuông góc với BI tại H.
a)Chứng minh bốn điểm B,A,H,C cùng thuộc một đường tròn
b) Biết AB=5, IC=8. Tính BC?
Cho tam giác ABC vuông tại A có BC=10cm AC =8cm. Kẻ đường phân giác BI I thuộc AC, kẻ ID vuông góc với BC (D thuộc BC)
a)Tính AB
b)Chứng minh tam giác AIB= tam giác DIB
c)Chứng minh BI là đường trung trực của AD
d)Gọi E là giao điểm của BA và DI. Chứng minh BI vuông góc với EC
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm; đường phân giác BI. Kẻ IH vuông góc BC ( H thuộc BC), gọi K là giao điểm AB và IH
Chứng minh: IB + IC + IK < 20
cho tam giác abc vuông tại a đường phân giác be kẻ ah vuông góc với bc [h thuộc bc] a] biết ab=4cm;bc=5cm tính ac b] chứng minh tam giác abe=tam giác hbe c] gọi k là giao điểm của ab và he chứng minh be vuông góc với b
hình tự kẻ nghen:33333
a) áp dụng định lý pytago vào tam giác vuông ABC
=> AB^2+AC^2=BC^2
=> BC^2-AB^2=AC^2
=> AC^2=5^2-4^2=25-16=9
=> AC=3 (AC>0)
b) xét tam giác BAE và tam giác BHE có
B1= B2(gt)
BE chung
BAE=BHE(=90 độ)
=> tam giác BAE= tam giác BHE (ch-gnh)
c) ta có AC vuông góc với BK
HK vuông góc với BC
và AC,HK,BE cùng giao nhau tại E
=> BE vuông góc với KC ( 3 đường cao trong tam giác cùng đi qua một điểm )
cho tam giác ABC vuông tại A có AB=6cm, AC=8cm; đường phân giác BI. kẻ IH vuông góc với BC (H thuộc BC). gọi K là giao điểm của AB và IH
a, tính BC
b, chứng minh: tam giác ABI= tam giác HIB
c, chứng minh ; BI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐOẠN THẲNG AH
d, chứng minh IA<IC
e, chứng minh I là trực tâm tam giác ABC
giúp mình nhé mình đang cần gấp
cho tam giác ABC vuông tại A, có BC=10cm,AC=8cm. Kẻ đường phân giác BI(I thuộc AC) kẻ ID vuông góc với BC(D thuộc BC)
a) tính AB
b)chứng minh tam giác AIB=tam giác DIB
c) chứng minh BI là đường trung trực của AD
d) gọi E là giao điểm của BA và DI. chứng minh BI vuông góc với BC ( D thuộc BC
Tham khảo:
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
cho tam giác ABC vuông tại A có đường phân giác BI( I thuộc AC), kẻ IH vông góc với BC( h thuộc BC) .Gọi K là giao điểm của AB và IH.Chứng minh rằng:
a).tam giác ABI= tam giac HBI
b). IK=IB
c).AI<IC
a) xét tam giác ABI và tam giác HBI có:
\(\widehat{BAI}\)= \(\widehat{BHI}\)(90 độ)
\(\widehat{B1}\)= \(\widehat{B2}\)( BI là tia phân giác của \(\widehat{ABC}\))
BI chung
=> tam giác ABI = tam giác HBI (cạnh huyền góc nhọn)
c) xét tam giác HIC cuông tại I có
HI là cạnh góc vuông
IC là cạnh huyền
vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất
=> IC > HI
Mà IA = IH (tam giác BAI = tam giác BHI)
=> AI < IC
Cho tam giác ABC vuông góc tại A đường phân giác BI.Kẻ IH vuông góc BC tại H
a)Chứng minh: BI là đường trung trực của AH
b)Chứng minh: IA < IC
c) Gọi K là giao điểm của AB và HI
Chứng minh: BI vuông góc CK
d)Chứng minh: AH song song CK
cho tam giác ABC vuông tại A(AB<AC), đường cao AH.Gọi D và E lần lượt là các đường vuông góc kẻ từ H xuống AB và AC
a, cho BH=4cm ,CH=9cm. Tính AH, DE
b, chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn
c,đường phân giác BAH cắt BC tại K. Gọi I là trung điểm của AK, Chứng minh CI vuông góc AK
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE=6(cm)
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
=>ADHE là tứ giác nội tiếp
=>A,D,H,E cùng thuộc 1 đường tròn
c: \(\widehat{CAK}+\widehat{BAK}=90^0\)
\(\widehat{CKA}+\widehat{HAK}=90^0\)
mà \(\widehat{BAK}=\widehat{HAK}\)
nên \(\widehat{CAK}=\widehat{CKA}\)
=>ΔCAK cân tại C
mà CI là đường trung tuyến
nên CI vuông góc AK
cho tam giác ABC vuông tại A biết AB=6cm,AC=8cm. a)tính BC b)tia phân giác của góc B cắt cạnh AC tại D kẻ DE vuông góc BC(E thuộc BC) gọi K là giao điểm của tia ED và đường thẳng AB chứng minh tam giác ABD = tam giác EBD c)chứng minh tam giác KDC cân d)kẻ AH vuông góc CK(H thuộc CK) và tia BD cắt CK tại I chứng minh AH song song BI
làm ơn giúp mik với mik đang gấp