Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ANH DINH
Xem chi tiết
Lightning Farron
8 tháng 12 2016 lúc 23:40

\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt \(a^2+5a+4=t\) ta có:

\(t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(a^2+5a+4+1\right)^2=\left(a^2+5a+5\right)^2\) Vậy M là số chính phương

 

Phượng Hoàng Lửa
Xem chi tiết
Dương Helena
19 tháng 12 2015 lúc 20:50

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS

Nguyễn Ngọc Quỳnh Phương
Xem chi tiết
Cô Hoàng Huyền
27 tháng 7 2018 lúc 11:36

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.

Ngô Trí Trường
Xem chi tiết
Hoàng Minh Hiển
3 tháng 6 2022 lúc 18:44

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

Hoàng Minh Hiển
3 tháng 6 2022 lúc 18:46

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b

Holmes Sherlock
Xem chi tiết
Holmes Sherlock
17 tháng 7 2016 lúc 17:47

đăng mà k ai trả lời

Phan Quynh anh
17 tháng 7 2016 lúc 18:32

bạn ra 1 lần nhiều thế này người ta ngại trả lời lắm

Ngô Trí Trường
Xem chi tiết
Ngô Trí Trường
Xem chi tiết
Ngô Trí Trường
Xem chi tiết
Nguyễn Hà Thảo Vy
15 tháng 12 2015 lúc 20:37

ai tick cho mik lên 250 điểm hỏi đáp với.

Kurosaki Akatsu
Xem chi tiết
Thiên An
12 tháng 7 2017 lúc 21:16

\(M=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt  \(t=a^2+5a+5\)

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(a^2+5a+5\right)^2\)