Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm biết rằng: x. f(x+1) = (x+3). f(x)
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
b. chứng minh rằng đa thức
(x^2 - 4) * f(x) = (x-1) * f(x+1) có ít nhất ba nghiệm
c. cho đa thức f(x) thoả mãn
x * f(x+2) = (x^2 - 9) * f(x)
cmnr: Đa thức f(x) = 0 có ít nhất 3 nghiệm
a, tìm nghiệm của đa thức f(x)=32-12X
b, tìm đa thức f(x)=ax+b biết f(1)=-2 và x=2 là nghiệm của .
c,chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm biết rằng:
(x-2).P(x+5)=(x2-9).P(x+2)
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Chứng minh đa thức f(x) có ít nhất 2 nghiệm biết rằng x f(x-2)=(x-4)f(x)
Với x=0 ta có 0.f(0-2)=(0-4).f(0)
=>-4.f(0)=0
=>f(0)=0
Vói x=4 ta có 4.f(4-2)=(4-4).f(4)
=>4.f(2)=0.f(4)
=>4.f(2)=0
=>f(2)=0
Vậy đa thức có ít nhất 2 nghiệm là 0 và 2
cho đa thức f(x) TM x.f(x-2)=(\(x^2\)-1).f(x)
chứng minh rằng đa thức f(x) có ít nhất 3 nghiệm
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
ae kiểm tra xem có phải là 1,-1,0 đúng ko
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
cho đa thức f(x) thỏa mãn: (x+2).f(x-10=(x2-9).f(x)
Chứng minh rằng đa thức f(x) có ít nhất 3 nghiệm