Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
blua
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:36

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
Đỗ Thị Hương Giang
Xem chi tiết
Phan Thế Trung
25 tháng 10 2016 lúc 21:03

t​a có: xy+3y-y=6

=> xy+2y=6

=> y(x+2)=6

vì x,y nguyên nên y,(x+2) là các ước của 6

ta có bảng sau

x+21-12-23-36-6
y6-63-32-21-1
x-1-30-41-54-8
what là cái gì
25 tháng 10 2016 lúc 21:20

xy+3y-y=6

xy+y(3-1)=6

xy+y2=6

y(x+2)=6

lập bảng

x+223-2-3
y32-3-2
x01-4-5

vậy với các cặp x,y thỏa mãn là:

nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5

Nguyen Thi Ngoc Linh
Xem chi tiết
Akai Haruma
14 tháng 9 lúc 20:17

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

Akai Haruma
14 tháng 9 lúc 20:17

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

Nguyễn Thị Tươi
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết
Trần Phú
10 tháng 12 2018 lúc 19:36

n=1và-1

Nguyễn Thị Thanh Huyền
10 tháng 12 2018 lúc 19:42
Phú bạn có thể trình bày cách làm cho mình hiểu đc ko
Oanh Pham Thi Yen
Xem chi tiết
Nguyễn Văn Hiếu
21 tháng 3 2016 lúc 21:18

sai đề rồi phải tìm x hay y chứ

nguyen viet hoang
Xem chi tiết
Nguyễn Hưng Phát
25 tháng 2 2016 lúc 13:14

Ta có:2n-1 chia hết cho 7

=>2n-1\(\in\)Ư(7)={-7,-1,1,7}

=>2n\(\in\){-6,0,2,8}

=>n\(\in\){-3,0,1,4}

Nguyễn Hưng Phát
25 tháng 2 2016 lúc 13:15

Bạn viết thêm 

Mà n là số nguyên dương nên n\(\in\){0,1,4}

Đinh Đức Hùng
25 tháng 2 2016 lúc 13:19

2n - 1 ⋮ 7 <=> 2n - 1 ∈ Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }

=> 2n ∈ { - 6 ; 0 ; 2 ; 8 }

=> n ∈ { - 3 ; 0 ; 1 ; 4 }

nguyen viet hoang
Xem chi tiết
Ngô Quang Chung
Xem chi tiết