5x-1/3=7y-6/5=5x-4y/4x
hay tim x , y
Tim x ; y biet: (5x-1)/3 = (7y-6)/5 = (5x-7y-7)/4x
tim x;y
\(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x+7y-7}{4x}\)
Từ \(\frac{5x-1}{3}=\frac{7y-6}{5}\) Áp dụng TC DTSBN ta có :
\(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{\left(5x-1\right)+\left(7y-6\right)}{3+5}=\frac{5x+7y-7}{8}=\frac{5x+7y-7}{4x}\)
\(\Rightarrow4x=8\Rightarrow x=2\)
\(\Rightarrow\frac{5.2-1}{3}=\frac{7y-6}{5}\)
\(\Leftrightarrow\frac{7y-6}{5}=3\)
\(\Rightarrow y=3\)
Vậy \(x=2;y=3\)
\(\frac{5x-1}{3}=\frac{7y-6}{5}\Rightarrow5\left(5x-1\right)=3\left(7y-6\right)\Rightarrow25x-5=21y-18\)
\(\Rightarrow21y=25x+13\Rightarrow7y=\frac{25x+13}{3}\)
Xét : \(\frac{5x+7y-7}{4x}=\frac{5x+\frac{25x+13}{3}-7}{4x}=\frac{10x-2}{3x}\)
\(\Rightarrow3x\left(5x-1\right)=3\left(10x-2\right)\Rightarrow15x^2-33x+6=0\)
\(\Rightarrow3\left(x-2\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
Với x=2 , ta có : y=3
Với x =\(\frac{1}{5}\), ta có : y= \(\frac{6}{7}\)
bai 1 Tim x,y
a, (x-3)x+3 =(x-3)x+13
b,\(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x-4y-7}{4x}\)
c,|x+5|=(3y-4)2016
bai 1 Tìm x,y \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x-4y-7}{4x}\)
Tìm x biết: (5x-1)/3=(7y-6)/5=5x+7y-7/4x.
Có (5x-1+7y-6)/(3+5)=(5x+7y-7)/4x
(5x+7y-7)/8=(5x+7y-7)/4x
=> 8=4x
=> x=2
Tìm x,y biết: \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x+7y-7}{4x}\)
bai 2 quy tac chuyen ve doi dau
a, 3x ²+6x+9-2x^5: 2x^4+3x:2x
b,4x ²y ²+y ³-2x-y ³+5x-3x ²y ³
c,18x+26x ² -48x ²+1x ³-5x ²-17x-x^4.x ²-4x^6
d,y ²-109y+27y+18y ²-7y ²+52y+9+4y ³-3y ².y ³+15y
Tìm x, y, z biết:
\(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}=\dfrac{5x+7y-7}{4x}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}=\dfrac{5x+7y-7}{8}=\dfrac{5x+7y-7}{4x}\)
+) Xét \(5x+7y-7=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{5x-1}{3}=0\\\dfrac{7y-6}{5}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x-1=0\\7y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{6}{7}\end{matrix}\right.\)
+) Xét \(5x+7y-7\ne0\)
\(\Rightarrow4x=8\Rightarrow x=2\)
Thay \(x=2\) vào \(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}\)
\(\Rightarrow3=\dfrac{7y-6}{5}\)
\(\Rightarrow7y=21\Rightarrow y=3\)
Vậy nếu \(5x+7y-7=0\) thì \(x=\dfrac{1}{5};y=\dfrac{6}{7}\)
nếu \(5x+7y-7\ne0\) thì x = 2, y = 3
tìm x,y biết : \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x-7y-7}{4x}\)