Cho a là số nguyên âm chứng tỏ giá trị biểu thức sau luôn âm:
A = - ( -a + b - c - 16 ) - ( -b + c + 29 )
Cho a,b thuộc Z là số nguyên âm:
M=(-a+b)-(b+c-a)+(c+a)
Chứng tỏ biểu thức M luôn âm
M=(-a+b)-(b+c-a)+(c-a) = -a+b-b-c+a+c-a=-a
Vì a là một số nguyên âm nên -a là một số nguyên dương
=> M=-a>0 Vậy M luôn luôn dương.
Cho a,b,c là số tự nhiên và a khác 0 .Chứng tỏ rằng:
biểu thức P luôn âm, biết:
P = a . ( b - a ) - b . ( a - c ) - b . c
Cho A=2x^4y^2-7x^3y^5 ; B=-1/2x^4y^2+2x^3y^5 ; C=5x^3y^5
Chứng tỏ rằng trong 3 biểu thức A,B,C có ít nhất 1 biểu thức luôn có giá trị không âm với mọi x,y
Bạn xét tích thì nó ra dương thì tất nhiên có 1 biểu thức lớn hơn 0 rồi
Cho M = (-a b) - (b c-a) + (c-a) trong đó b,c thuộc Z còn a là số nguyên âm . Chứng tỏ rằng M luôn nguyên dương
Đề có vẻ sai nhé bạn!!!
Thiếu dấu!!
hok tốt!!!
^^
Cho a,b,c ϵ N và a ≠ 0. Chứng tỏ rằng biểu thức P luôn âm, biết: P = a(b-a) - b(a+c) - bc
P = a(b - a) - b(a + c) - bc
= ab - a² - ab - bc - bc
= -a² - 2bc
= -(a² + 2bc)
Do a, b, c ∈ ℕ và a ≠ 0
⇒ a² + 2bc > 0
⇒ -(a² + 2bc) < 0
Vậy P luôn âm
a) Đơn giản biểu thức sau khi bỏ ngoặc : (a-b+c)-(d+c-b)
b) Tìm các số nguyên n biết -35 chia hết cho n-8
c) Cho a,b là hai số nguyên khác nhau , chứng tỏ rằng (a-b)(b-a) là số nguyên âm
a) (a-b+c)-(d+c-b)
= a - b + c - d - c + b
= a - d
b) -35 chia hết cho n-8
=> n - 8 thuộc Ư(-35)
=> n - 8 thuộc {-1; 1; -5; 5; -7; 7; - 35; 35}
=> n thuộc {7; 9; 3; 13; 1; 15; -27; 43}
c) a và b là 2 số nguyên khác nhau
=> a - b và b - a khác 0
a - b và b - a là 2 số đối nhau
=> (a - b)(b - a) là số nguyên âm
\(a,\left(a-b+c\right)-\left(d+c-b\right)\)
\(< =>a-b+c-d-c+b\)
\(< =>a-d\)
\(b,-35⋮n-8\)
\(=>n-8\inƯ\left(-35\right)\)
Nên ta có bảng sau :
n-8 | 1 | -1 | -5 | 55 | -7 | 7 | -35 | 35 |
n | 7 | 9 | 3 | 13 | 1 | 15 | -27 | 43 |
Vậy ...
\(c,\)a và b là 2 số nguyên khác nhau
=>a-b khác b-a
=>a-b và b-a là 2 số đối nhau
=>(a-b).(b-a) là số nguyên âm
Câu 1
Cho biểu thức A = \(\frac{x^2+3}{x-2}\)
a) TÌm điều kiện của x để giá trị của biểu thức A luôn xác định
b) Với những giá trị nào của x thì biểu thức A nhận giá trị là số âm
c) Tìm tất cả các số nguyên x để biểu thức A nhận giá trị nguyên
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
Cho biểu thức : A = (-x+y-z) - (y-x) - (x-z). Với y, z thuộc Z, x là số nguyên âm. Chứng minh rằng giá trị của biểu thức A luôn dương.
Ta có:
A = ( -x + y - z) - ( y - x ) - ( x- z )
A = -x + y - z - y + x - x + z
A = ( -x + x ) + ( y - y ) - ( z - z )
A = 0 + 0 - 0 = 0
=> ĐPCM
Vậy giá trị của biểu thức A luôn dương
K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !
Lộn x > -3 sau đó các bạn tự suy ra nha!
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự